Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-x^2-14x+24\)
\(=x^3+4x^2-5x^2-20x+6x+24\)
\(=\left(x^3+4x^2\right)-\left(5x^2+20x\right)+\left(6x+24\right)\)
\(=x^2\left(x+4\right)-5x\left(x+4\right)+6\left(x+4\right)\)
\(=\left(x^2-5x+6\right)\left(x+4\right)\)
\(=\left(x^2-2x-3x+6\right)\left(x+4\right)\)
\(=\left[x\left(x-2\right)-3\left(x-2\right)\right]\left(x+4\right)\)
\(=\left(x-2\right)\left(x-3\right)\left(x+4\right)\)
\(x^3-3x^2+1-3x=\left(x^3+1\right)-3x^2-3x\)
\(=\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)=\left(x+1\right)\left(x^2-x+1-3x\right)=\left(x+1\right)\left(x^2-4x+1\right)\)
Pt vô nghiệm
=> dùng hệ số bất định hay phân tích có nhân tử là (x2+x+1)
x2y + xy2 + x2z + xz2 + y2z + yz2 +3xyz
=(x2y+x2z)+(xy2+xz2)+(y2z+yz2)+3xyz
=x2(y+z)+x(y2+z2)+yz(y+z)+2xyz+xyz
=x2(y+z)+x(y2+z2+2yz)+yz(y+z+x)
=(y+z)x(x+y+z)+yz(y+x+z)
=(x+y+z)(xy+xz+yz)
x2y + xy2 + x2z + xz2 + y2z + yz2 + 3xyz
=(x2y + xy2 + xyz) + (x2z + xyz + xz2) + (xyz + y2z + yz2)
=xy(x + y + z) + xz(x + y + z) + yz(x + y +z)
=(x + y + z)(xy + xz + yz)
\(x^4-5x^2y^2+4y^4\)
\(=\left(x^2\right)^2-2x^22y^2+\left(2y^2\right)^2-x^2y^2\)
\(=\left(x^2-2y^2\right)^2-\left(xy\right)^2\)
\(=\left(x^2-2y^2-xy\right)\left(x^2-2y^2+xy\right)\)
\(x^2+5x-2=\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}\right)-\frac{25}{4}-2=\left(x+\frac{5}{2}\right)^2-\frac{33}{4}\)
\(=\left(x+\frac{5}{2}\right)^2-\left(\frac{\sqrt{33}}{2}\right)^2=\left(x+\frac{5}{2}-\frac{\sqrt{33}}{2}\right)\left(x+\frac{5}{2}+\frac{\sqrt{33}}{2}\right)\)
\(=\left(x+\frac{5-\sqrt{33}}{2}\right)\left(x+\frac{5+\sqrt{33}}{2}\right)\)