Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x\left(x+4\right)\left(x-4\right)-\left(x^2-1\right)\left(x^2+1\right)\)
\(=x\left(x^2-16\right)-\left(x^4-1\right)\)
\(=x^3-16x-x^4+1\)
bạn ktra lại đề
b) \(x^4+2x^3+5x^2+4x-12\)
\(=x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3+3x^2+8x+12\right)\)
\(=\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)
\(x^4-x^3-x^2+1\)
\(\text{ Phân tích thành nhân tử}\)
\(\left(x-1\right)\left(x^3-x-1\right)\)
\(-x-y^2+x^2-y\)
\(\text{ Phân tích thành nhân tử}\)
\(\left(-\left(y-x+1\right)\right)\left(y+x\right)\)
\(x^2-y^2-x-y\)
\(\text{ Phân tích thành nhân tử}\)
\(\left(-\left(y-x+1\right)\right)\left(y+x\right)\)
\(x^2-y^2+4-4x\)
\(\text{ Phân tích thành nhân tử}\)
\(\left(-\left(y-x+2\right)\right)\left(y-x+2\right)\)
Tôi làm tạm theo cách này nhé.
\(x^4-2x^2-114x-1295\)
\(=\frac{d}{dx}\left(x^4-2x^2-114x-1295\right)\)
\(=4x^3-4x-114-0\)
\(=4x^3-4x-114\)
Bạn Phương Lê Nhật ơi!!!!
Đây là Toán 8 bạn ạ
Bạn giải mk ko hiểu j cả
Giải cụ thể đc ko bạn ạ
a ) x^4 - x^3 - x^2 +1
=từ từ
b ) - x - y^2 + x^2 - y
=(x+y)(x-y) - (x+y)
= (x+y) (x-y+1)
c ) x^2 - y^2 - x - y
= Giống câu b
d ) x^2 - y^2 + 4 - 4x
= (x^2 - 2x + 4) - y^2
= (x-2)^2 - y^2
= (x+y-2) (x-y-2)
a) \(x^3-16x=0\)
\(\Leftrightarrow x\left(x^2-16\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-16=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm4\end{cases}}\)
Vậy tập nghiệm \(S=\left\{-4;0;4\right\}\)
b) \(x^4-2x^3+10x^2-20x=0\)
\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x^3+10x\right)\left(x-2\right)=0\)
\(\Leftrightarrow x\left(x^2+10\right)\left(x-2\right)=0\)
Mà \(x^2+10>0\)nên \(\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy tập nghiệm S = { 0;2}
a) Ta có: \(x^4-16x^2=0\)
\(\Leftrightarrow x^2\left(x^2-16\right)=0\)
\(\Leftrightarrow x^2\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
b) Ta có: \(x^8+36x^4=0\)
\(\Leftrightarrow x^4\left(x^4+36\right)=0\)
\(\Leftrightarrow x^4=0\)
hay x=0
c) Ta có: \(\left(x-5\right)^3-x+5=0\)
\(\Leftrightarrow\left(x-5\right)\cdot\left[\left(x-5\right)^2-1\right]=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-4\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\\x=6\end{matrix}\right.\)
d) Ta có: \(5\left(x-2\right)-x^2+4=0\)
\(\Leftrightarrow5\left(x-2\right)-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(5-x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
1/ = x4 + 2x3 + 4x2 + 3x - 10 = (x4 - x3) + (3x3 - 3x2) + (7x2 - 7x) + (10x - 10)
= (x - 1)(x3 + 3x2 + 7x + 10) = (x - 1)[(x3 + 2x2) + (x2 + 2x) + (5x + 10)]
= (x - 1)(x + 2)(x2 + x + 5)
2/ = (x5 - 2x4) + (x4 - 2x3) + (x3 - 2x2) + (x2 - 2x) + (x - 2) = (x - 2)(x4 + x3 + x2 + x + 1)
-x^4 + x^3 - 16x + 1 là đáp án cuối cùng bạn nhé, còn lại bạn làm đúng rồi đấy
Vậy mà mk ngồi cả buổi chiều cx nghĩ ko ra bài này