Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a Đề sai: )
b
\(a^3-a^2x-ay+xy\\ =a^2\left(a-x\right)-y\left(a-x\right)\\ =\left(a-x\right)\left(a^2-y\right)\)
c
\(4x^2-y^2+4x+1\\ =\left(2x\right)^2+2.2x.1+1-y^2\\ =\left(2x+1\right)^2-y^2\\ =\left(2x+1-y\right)\left(2x+1+y\right)\)
d
\(x^4+2x^3+x^2\\ =x^4+x^3+x^3+x^2\\ =x^3\left(x+1\right)+x^2\left(x+1\right)\\ =\left(x^3+x^2\right)\left(x+1\right)\)
e
\(5x^2-10xy+5y^2-5z^2\\ =5\left(x^2-2xy+y^2-z^2\right)\\ =5\left[\left(x-y\right)^2-z^2\right]\\ =5\left(x-y-z\right)\left(x-y+z\right)\)
c: =(2x+1)^2-y^2
=(2x+1+y)(2x+1-y)
d: =x^2(x^2+2x+1)
=x^2(x+1)^2
e: =5(x^2-2xy+y^2-z^2)
=5[(x-y)^2-z^2]
=5(x-y-z)(x-y+z)
Bài 1:
a: Ta có: \(\left(6x+3\right)-\left(2x-5\right)\left(2x+1\right)\)
\(=\left(2x+1\right)\left(3-2x+5\right)\)
\(=\left(2x+1\right)\left(8-2x\right)\)
\(=2\left(4-x\right)\left(2x+1\right)\)
b) Ta có: \(\left(3x-2\right)\left(4x-3\right)-\left(2-3x\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)
\(=\left(3x-2\right)\left(4x-3\right)+\left(3x-2\right)\left(x-1\right)-\left(3x-2\right)\left(2x+2\right)\)
\(=\left(3x-2\right)\left(4x-3+x-1-2x-2\right)\)
\(=\left(3x-2\right)\left(3x-6\right)\)
\(=3\left(3x-2\right)\left(x-2\right)\)
Bài 2:
a: Ta có: \(\left(a-b\right)\left(a+2b\right)-\left(b-a\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)
\(=\left(a-b\right)\left(a+2b\right)+\left(a-b\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)
\(=\left(a-b\right)\left(a+2b+2a-b-a-3b\right)\)
\(=\left(a-b\right)\left(2a-4b\right)\)
\(=2\left(a-b\right)\left(a-2b\right)\)
f: Ta có: \(x^2-6xy+9y^2+4x-12y\)
\(=\left(x-3y\right)^2+4\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x-3y+4\right)\)
`Answer:`
1) \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)
\(=[x\left(x+3\right)][\left(x+1\right)\left(x+2\right)]+1\)
\(=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)
\(=\left(x^2+3x\right)^2+2.\left(x^2+3x\right)+1\)
\(=\left(x^2+3x+1\right)^2\)
2) \(\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4\)
\(=[\left(4x+1\right)\left(3x+2\right)][\left(12x-1\right)\left(x+1\right)]-4\)
\(=\left(12x^2+8x+3x+2\right)\left(12x^2+12x-x-1\right)-4\)
\(=[\left(12x^2+11x+0,5\right)+1,5][\left(12x^2+11x+0,5\right)-1,5]-4\)
\(=\left(12x^2+11x+0,5\right)^2-\left(1,5\right)^2-4\)
\(=\left(12x^2+11x+0,5\right)^2-\left(2,5\right)^2\)
\(=\left(12x^2+11x+0,5-2,5\right)\left(12x^2+11x+0,5+2,5\right)\)
\(=\left(12x^2+11x-2\right)\left(12x^2+11x+3\right)\)
3) \(\left(x^2+6x+5\right)\left(x^2+10x+21\right)+15\)
\(=\left(x^2+x+5x+5\right)\left(x^2+3x+7x+21\right)+15\)
\(=\left(x+1\right)\left(x+5\right)\left(x+3\right)\left(x+7\right)+15\)
\(=[\left(x+1\right)\left(x+7\right)][\left(x+5\right)\left(x+3\right)]+15\)
\(=\left(x^2+x+7x+7\right)\left(x^2+3x+5x+15\right)+15\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
Đặt \(v=x^2+=8x+11\)
Đa thức có dạng sau: \(\left(v-4\right)\left(v+4\right)+15\)
\(=v^2-4^2+15\)
\(=v^2-1\)
\(=\left(v+1\right)\left(v-1\right)\)
\(=\left(x^2+8x+11+1\right)\left(x^2+8x+11-1\right)\)
\(=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)
4) \(\left(x^2-a\right)^2-6x^2+4x+2a\)
\(=\left(x^2-a\right)\left(x^2-a\right)-6x^2+4x+2a\)
\(=\left(x^2-a\right).x^2-a\left(x^2-a\right)-6x^2+4x+2a\)
\(=x^4-ax^2-a.\left(x^2-a\right)-6x^2+4x+2a\)
\(=x^4-ax^2-\left(ax^2-aa\right)-6x^2+4x+2a\)
\(=x^4-2ax^2+a^2-6x^2+2a+4x\)
6) \(a^2-b^2-c^2+2bc-2a+1\)
\(=\left(a^2-2a+1\right)-\left(b^2-2bc+c^2\right)\)
\(=\left(a-1\right)^2-\left(b-c\right)^2\)
\(=\left(a-b+c-1\right)\left(a+b-c-1\right)\)
7) \(4a^2-4b^2+16bc-16c^2\)
\(=4a^2-\left(4b^2-16bc+16c^2\right)\)
\(=\left(2a\right)^2-\left(2b-4c\right)^2\)
\(=\left(2a-2b+4c\right)\left(2a+2b-4c\right)\)
\(=2.\left(a-b-2c\right).2\left(a+b-2c\right)\)
\(=4\left(a-b-2c\right)\left(a+b-2c\right)\)
a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x-1\right)\left(2x+1\right)\)
b) \(25a^2-0.01=\left(5a\right)^2-\left(0.1\right)^2=\left(5a-0.1\right)\left(5a+0.1\right)\)
a, \(4x^2-1\)
=\(\left(2x^2\right)-1\)
=\(\left(2x-1\right).\left(2x+1\right)\)
b,\(25a^2-0,01\)
=\(\left(5a\right)^2-\left(0,1\right)^2\)
=\(\left(5a-0,1\right)\left(5a+0,1\right)\)
c,2a(x+y)-3b(x+y)
=(x+y)(2a-3b)
d,\(4x^2-12xy+9y^2\)
=\(\left(2x-3y\right)^2\)
g,\(\left(x+y\right)^2-2\left(x+y\right)+1\)
=\(\left(x+y-1\right)^2\)
h,\(x^4-9x^3+x^2-9x\)
=\(x^3\left(x-9\right)+x\left(x-9\right)\)
=\(\left(x^3+x\right).\left(x-9\right)\)
=\(x.\left(x^2+1\right).\left(x-9\right)\)
i,\(x^2-x-y^2-y\)
=\(x^2-y^2-x-y\)
=\(\left(x-y\right).\left(x+y\right)-\left(x+y\right)\)
=\(\left(x+y\right).\left(x-y-1\right)\)
\(\left(2a+3\right)\left(2a+3\right)y+\left(2a+3\right)\)
\(=\left(2a+3\right)[y\left(2a+3\right)+1]\)
\(=\left(2a+3\right)\left(2ay+3y+1\right)\)
\(\left(a-b\right)x+\left(b-a\right)y-\left(a-b\right)\) (Sửa đề)
\(=\left(a-b\right)x-\left(a-b\right)y-\left(a-b\right)\)
\(=\left(a-b\right)\left(x-y-1\right)\)
\(a,\left(2a+3\right)x-\left(2a+3\right)y+\left(2a+3\right)\)
\(=\left(2a+3\right)\left(x-y+1\right)\)
\(b,\left(4x-y\right)\left(a-1\right)-\left(y-4x\right)\left(b-1\right)+\left(4x-y\right)\left(1-c\right)\)
\(=\left(4x-y\right)\left(a-1\right)+\left(4x-y\right)\left(b-1\right)+\left(4x-y\right)\left(1-c\right)\)
\(=\left(4x-y\right)\left(a-1+b-1+1-c\right)\)
\(=\left(4x-y\right)\left(a+b-c-1\right)\)
\(c,x^k+1-x^k-1\)
\(=0?!?!\)
\(d,x^m+3-x^m+1\)
\(=4\)
\(e,3\left(x-y\right)^3-2\left(x-y\right)^2\)
\(=\left(x-y\right)^2\left(3\left(x-y\right)-2\right)\)
\(=\left(x-y\right)^2\left(3x-3y-2\right)\)
\(f,81a^2+18a+1\)
\(=\left(9a\right)^2+2.9a+1\)
\(=\left(9a+1\right)^2\)
\(g,25a^2.b^2-16c^2\)
\(=\left(5ab\right)^2-\left(4c\right)^2\)
\(=\left(5ab+4c\right)\left(5ab-4c\right)\)
\(h,\left(a-b\right)^2-2\left(a-b\right)c+c^2\)
\(=\left(a-b-c\right)^2\)
\(i,\left(ax+by\right)^2-\left(ax-by\right)^2\)
\(=\left(ax+by-ax+by\right)\left(ax+by+ax-by\right)\)
\(=2by.2ax\)
\(=4axby\)