Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(x^3+2x-3\)
\(=\left(x^3-x^2\right)+\left(x^2-x\right)+\left(3x-3\right)\)
\(=x^2\left(x-1\right)+x\left(x-1\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+3\right)\)
2) \(x^3-6x+4\)
\(=\left(x^3-2x^2\right)+\left(2x^2-4x\right)-\left(2x-4\right)\)
\(=x^2\left(x-2\right)+2x\left(x-2\right)-2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2x-2\right)\)
3) \(x^3-2x^2+1\)
\(=\left(x^3-x^2\right)-\left(x^2-x\right)-\left(x-1\right)\)
\(=x^2\left(x-1\right)-x\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-x-1\right)\)
4) \(x^3+5x^2-12\)
\(=\left(x^3+2x^2\right)+\left(3x^2+6x\right)-\left(6x+12\right)\)
\(=x^2\left(x+2\right)+3x\left(x+2\right)-6\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+3x-6\right)\)
Lời giải:
a.
\(-16a^4b^6-24a^5b^5-9a^6b^4=-[(4a^2b^3)^2+2.(4a^2b^3).(3a^3b^2)+(3a^3b^2)^2]\)
\(=-(4a^2b^3+3a^3b^2)^2=-[a^2b^2(4b+3a)]^2\)
\(=-a^4b^4(3a+4b)^2\)
b.
$x^3-6x^2y+12xy^2-8x^3$
$=x^3-3.x^2.2y+3.x(2y)^2-(2y)^3=(x-2y)^3$
c.
$x^3+\frac{3}{2}x^2+\frac{3}{4}x+\frac{1}{8}$
$=x^3+3.x^2.\frac{1}{2}+3.x.\frac{1}{2^2}+(\frac{1}{2})^3$
$=(x+\frac{1}{2})^3$
a) Ta có: \(-16a^4b^6-24a^5b^5-9a^6b^4\)
\(=-a^4b^4\left(16b^2+24ab+9a^2\right)\)
\(=-a^4b^4\cdot\left(4b+3a\right)^2\)
b) Ta có: \(x^3-6x^2y+12xy^2-8y^3\)
\(=x^3-3\cdot x^2\cdot2y+3\cdot x\cdot\left(2y\right)^2-\left(2y\right)^3\)
\(=\left(x-2y\right)^3\)
c) Ta có: \(x^3+\dfrac{3}{2}x^2+\dfrac{3}{4}x+\dfrac{1}{8}\)
\(=x^3+3\cdot x^2\cdot\dfrac{1}{2}+3\cdot x\cdot\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3\)
\(=\left(x+\dfrac{1}{2}\right)^3\)
a: \(=\dfrac{2}{5}\left(xy-x-y^2+1\right)\)
\(=\dfrac{2}{5}\left[x\left(y-1\right)-\left(y-1\right)\left(y+1\right)\right]\)
\(=\dfrac{2}{5}\left(y-1\right)\left(x-y-1\right)\)
b: \(=x\left(x^2+2xy+y^2-9\right)\)
\(=x\left(x+y-3\right)\left(x+y+3\right)\)
Lời giải:
a. Không phân tích được nữa
b. $x^2(x-y)+4(y-x)=x^2(x-y)-4(x-y)=(x-y)(x^2-4)=(x-y)(x-2)(x+2)$
c. $x^3+2x^2y+xy^2-4x=x(x^2+2xy+y^2-4)$
$=x[(x^2+2xy+y^2)-4]=x[(x+y)^2-2^2]=x(x+y-2)(x+y+2)$
1A:
a: \(x^3+2x=x\left(x^2+2\right)\)
b: \(3x-6y=3\left(x-2y\right)\)
c: \(5\left(x+3y\right)-15x\left(x+3y\right)\)
\(=5\left(x+3y\right)\left(1-3x\right)\)
d: \(3\left(x-y\right)-5x\left(y-x\right)\)
\(=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(x-y\right)\left(5x+3\right)\)
1A. a. x(x2+2)
b. 3(x-2y)
c. 5(x+3y)(1-3x)
d. (x-y) (3-5x)
1B. a. 2x(2x-3)
b.xy(x2-2xy+5)
c. 2x(x+1)(x+2)
d. 2x(y-1)+2y(y-1)=2(y-1)(x-y)
\(a,=ab\left(a+3\right)\\ b,=\left(x-1\right)^2\\ c,=x\left[\left(x-3\right)^2-y^2\right]=x\left(x-y-3\right)\left(x+y-3\right)\)
c. \(x^4-2x^3-2x^2-2x-3=x^3\left(x-3\right)+x^2\left(x-3\right)+x\left(x-3\right)+x-3\)
\(=\left(x-3\right)\left(x^3+x^2+x+1\right)=\left(x-3\right)\left(x+1\right)\left(x^2+1\right)\)
a) \(x^3-2x^2+5x-4\)
\(=x^3-x^2-x^2+x+4x-4\)
\(=x^2\left(x-1\right)-x\left(x-1\right)+4\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-x+4\right)\)
b) \(x^3-x^2+x+3=\left(x+1\right)\left(x^2-2x+3\right)\)
c) \(x^3-6x^2-9x+14=\left(x-7\right)\left(x-1\right)\left(x+2\right)\)
d) \(x^4+2x^2-3=\left(x-1\right)\left(x+1\right)\left(x^2+3\right)\)
a) x3−2x2+5x−4�3−2�2+5�−4
=x3−x2−x2+x+4x−4=�3−�2−�2+�+4�−4
=x2(x−1)−x(x−1)+4(x−1)=�2(�−1)−�(�−1)+4(�−1)
=(x−1)(x2−x+4)