Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1A:
a: \(x^3+2x=x\left(x^2+2\right)\)
b: \(3x-6y=3\left(x-2y\right)\)
c: \(5\left(x+3y\right)-15x\left(x+3y\right)\)
\(=5\left(x+3y\right)\left(1-3x\right)\)
d: \(3\left(x-y\right)-5x\left(y-x\right)\)
\(=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(x-y\right)\left(5x+3\right)\)
1A. a. x(x2+2)
b. 3(x-2y)
c. 5(x+3y)(1-3x)
d. (x-y) (3-5x)
1B. a. 2x(2x-3)
b.xy(x2-2xy+5)
c. 2x(x+1)(x+2)
d. 2x(y-1)+2y(y-1)=2(y-1)(x-y)
a: \(x^4-4x^3-8x^2+8x\)
\(=x\left(x^3-4x^2-8x+8\right)\)
\(=x\left[\left(x+2\right)\left(x^2-2x+4\right)-4x\left(x+2\right)\right]\)
\(=x\left(x+2\right)\left(x^2-6x+4\right)\)
b: \(x^2-1-xy+y\)
\(=\left(x-1\right)\left(x+1\right)-y\left(x-1\right)\)
\(=\left(x-1\right)\left(x-y+1\right)\)
c: Ta có: \(\left(x-1\right)\left(x-2\right)\left(x-3\right)+\left(x-1\right)^2\cdot\left(x-2\right)\)
\(=\left(x-1\right)\cdot\left(x-2\right)\cdot\left(x-3-x-1\right)\)
\(=2\cdot\left(x-1\right)\cdot\left(x-2\right)^2\)
a) \(3\left(x-y\right)^2+9y\left(y-x\right)^2\)
\(=3\left(x-y\right)^2+9y\left(x-y\right)^2\)
\(=\left(x-y\right)^2\left(3-9y\right)\)
\(=3\left(x-y\right)^2\left(3y+1\right)\)
b) \(3\left(x-y\right)^2+9y\left(y-x\right)\)
\(=3\left(y-x\right)^2+9y\left(y-x\right)\)
\(=\left(y-x\right)\left[3\left(y-x\right)+9y\right]\)
\(=3\left(y-x\right)\left(y-x+3y\right)\)
\(=3\left(y-x\right)\left(4y-x\right)\)
a: =3(x-y)^2+9y(x-y)^2
=(x-y)^2(3+9y)
=(x-y)^2*3*(y+3)
b: =3(x-y)^2-9y(x-y)
=3(x-y)(x-y-9y)
=3(x-y)(x-10y)
\(a,4x^2-4x+1\\ =\left(2x\right)^2-2.2x+1^2=\left(2x-1\right)^2\\ c,x^2-6xy-25z^2+9y^2\\ =\left(x^2-2.x.3y+9y^2\right)-\left(5z\right)^2\\ =\left(x-3y\right)^2-\left(5z\right)^2\\ =\left(x-3y-5z\right)\left(x-3y+5z\right)\)
Xem lại đề ý b
a: \(A=x^3y-12xy-x^2y\)
\(=xy\cdot x^2-xy\cdot12-xy\cdot x\)
\(=xy\left(x^2-x-12\right)\)
\(=xy\left(x^2-4x+3x-12\right)\)
\(=xy\left[x\left(x-4\right)+3\left(x-4\right)\right]\)
\(=xy\left(x-4\right)\left(x+3\right)\)
c: \(C=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-120\)
=(x+1)(x+4)(x+2)(x+3)-120
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-120\)
\(=\left(x^2+5x\right)^2+10\left(x^2+5x\right)+24-120\)
\(=\left(x^2+5x\right)^2+10\left(x^2+5x\right)-96\)
\(=\left(x^2+5x+16\right)\left(x^2+5x-6\right)\)
\(=\left(x^2+5x+16\right)\left(x+6\right)\left(x-1\right)\)
d: \(D=x^5-x^4+x^2-1\)
\(=\left(x^5-x^4\right)+\left(x^2-1\right)\)
\(=x^4\left(x-1\right)+\left(x-1\right)\left(x+1\right)\)
\(=\left(x-1\right)\left(x^4+x+1\right)\)
a: \(7x-14y=7\left(x-2y\right)\)
b: \(4x^2-4x+1=\left(2x-1\right)^2\)
a) \(x^4-y^4\)
\(=\left(x^2\right)^2-\left(y^2\right)^2\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)\)
b) \(x^2-3y^2\)
\(=x^2-\left(y\sqrt{3}\right)^2\)
\(=\left(x-y\sqrt{3}\right)\left(x+y\sqrt{3}\right)\)
c) \(\left(3x-2y\right)^2-\left(2x-3y\right)^2\)
\(=\left(3x-2y+2x-3y\right)\left(3x-2y-3x+2y\right)\)
\(=0\cdot0\)
\(=0\)
d) \(9\left(x-y\right)^2-4\left(x+y\right)^2\)
\(=\left(3x-3y\right)^2-\left(2x+2y\right)^2\)
\(=\left(3x-3y-2x-2y\right)\left(3x-3y+2x+2y\right)\)
\(=\left(x-5y\right)\left(5x-y\right)\)
e) \(\left(4x^2-4x+1\right)-\left(x+1\right)^2\)
\(=\left(2x-1\right)^2-\left(x+1\right)^2\)
\(=\left(2x-1+x+1\right)\left(2x-1-x-1\right)\)
\(=3x\left(x-2\right)\)
f) \(x^3+27\)
\(=x^3+3^3\)
\(=\left(x+3\right)\left(x^2-3x+9\right)\)
g) \(27x^3-0,001\)
\(=\left(3x\right)^3-\left(0,1\right)^3\)
\(=\left(3x-0,1\right)\left(9x^2+0,3x+0,01\right)\)
h) \(125x^3-1\)
\(=\left(5x\right)^3-1^3\)
\(=\left(5x-1\right)\left(25x^2+5x+1\right)\)
c) \(\left(3x-2y\right)^2-\left(2x-3y\right)^2\)
\(=\left(3x-2y+2x-3y\right)\left(3x-2y-2x+3y\right)\)
\(=\left(5x-5y\right)\left(x+y\right)\)
\(=5\left(x+y\right)\left(x-y\right)\)
a: \(=\left(2x+y\right)^2-3^2=\left(2x+y+3\right)\left(2x+y-3\right)\)
b: =3x(x-y)-(x-y)=(x-y)(3x-1)
a. `6x(x-2015)-x+2015=6x(x-2015)-(x-2015)=(x-2015)(6x-1)`
b. `x^4+4x^2+4=(x^2)^2+2.x^2 .2 +2^2=(x^2+2)^2`
a) \(6x\left(x-2015\right)-x+2015\)
\(=6x\left(x-2015\right)-\left(x-2015\right)\)
\(=\left(x-2015\right)\left(6x-1\right)\)
b) \(x^4+4x^2+4\)
\(=x^4+2\cdot x^2\cdot2+2^2\)
\(=\left(x^2+2\right)^2\)