K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(A=10x^2+20xy+10y^2-90\)

\(=10\left(x^2+2xy+y^2-9\right)\)

\(=10\left(x+y-3\right)\left(x+y+3\right)\)

b: Ta có: \(B=x^3y-3x^2y-4xy+12y\)

\(=x^2y\left(x-3\right)-4y\left(x-3\right)\)

\(=y\left(x-3\right)\left(x-2\right)\left(x+2\right)\)

c: Ta có: \(C=125x^3-10x^2+2x-1\)

\(=\left(5x-1\right)\left(25x^2+5x+1\right)-2x\left(5x-1\right)\)

\(=\left(5x-1\right)\left(25x^2+3x+1\right)\)

30 tháng 9 2015

 

a) x3+y3+z3-3xyz

=(x+y)3+z3-3x2y-3xy2-3xyz

=(x+y+z).[(x+y)2+(x+y).z+z2]-3xy.(x+y+z)

=(x+y+z)(x2+2xy+y2+zx+zy+z2)-3xy.(x+y+z)

=(x+y+z)(x2+2xy+y2+zx+zy+z2-3xy)

=(x+y+z)(x2+y2+zx+zy+z2-zy)

 

b)a2(b-c)+b2(c-a)+c2(a-b)

=a2b-a2c+b2c-b2a+c2a-c2b

=(a2b-c2b)+(-a2c+c2a)+(b2c-b2a)

=b.(a2-c2)-ac.(a-c)-b2.(a-c)

=b.(a+c)(a-c)-ac.(a-c)-b2.(a-c)

=(a-c)[b.(a+c)-ac-b2]

=(a-c)(ab+bc-ac-b2)

=(a-c)[(ab-ac)+(bc-b2)]

=(a-c)[a.(b-c)-b.(b-c)]

=(a-c)(b-c)(a-b)

14 tháng 8 2019

a/ \(12x^2+5x-12y^2+12y-10xy-3.\)

\(=12x^2+9x-4x-12y^2+6y+6y-18xy+8xy-3.\)

\(=\left(12x^2-18xy+9x\right)-\left(4x-6y+3\right)+\left(8xy-12y^2+6y\right)\)

\(=3x\left(4x-6y+3\right)-\left(4x-6y+3\right)+2y\left(4x-6y+3\right)\)

\(=\left(4x-6y+3\right)\left(3x-1+2y\right)\)

2/ \(2x^2+y^2+3x-2y-3xy+1\)

\(=\left(y^2-2y+1\right)+\left(3x-3xy\right)+2x^2\)

\(=\left(y-1\right)^2+3x\left(1-y\right)+2x^2\)

\(=\left(y-1\right)^2-3x\left(y-1\right)+2x^2\)

16 tháng 7 2019

\(\left(2a+b\right)^2-\left(2a+a\right)^2\)

\(=\left(2a+b-2a-a\right)\left(2a+b+2a+a\right)\)

\(=\left(b-a\right)\left(5a+b\right)\)

16 tháng 7 2019

\(\left(2a+b\right)^2-\left(2a+a\right)^2\)

\(=\left(2a+b\right)^2-\left(3a\right)^2\)

\(=\left(2a+b-3a\right)\left(2a+b+3a\right)\)

\(=\left(b-a\right)\left(5a+b\right)\)

17 tháng 6 2018

Bài 1: mình ko bik yêu cầu đề bài nên mình ko làm.

Bài 2: 

a/ \(\left(2x+5\right)^2=\left(2x\right)^2+2.2x.5+5^2\)

\(=4x^2+20x+25\)

b/ \(\left(3x+4\right)^2=\left(3x\right)^2+2.3x.4+4^2\)

\(=9x^2+24x+16\)

c/\(\left(3x+5y+\frac{1}{2}\right)^2\)

Đối với bình phương của một tổng gồm ba hạng tử, ta có công thức như sau:

(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=a2+b2+c2+2(ab+bc+ac)

\(\left(3x+5y+\frac{1}{2}\right)^2=9x^2+25y^2+\frac{1}{4}+2\left(15x+\frac{3x}{2}+\frac{5y}{2}\right)\)

Bài 3:

a/ A= x2+10x+30

A= x2+2.5x+25+5

A= x2+2.5.x+52+5

A=(x+5)2+5

Ta có (x+5)2 luôn luôn > hoặc = 0

=>(x+5)2+5 luôn luôn lớn hơn 0 (vì 5>0)

=> A luôn dương.

b/ \(B=3x^2+6x+19\\ B=\left(\sqrt{3x}\right)^2+2x.\sqrt{3}.\sqrt{3}+3+16\)

\(B=\left(\sqrt{3x}+\sqrt{3}\right)^2+16\)

(Tương tự như câu A)

Ta có \(\left(\sqrt{3x}+\sqrt{3}\right)^2\)luôn luôn > hoặc = 0

=> \(\left(\sqrt{3x}+\sqrt{3}\right)^2+16\) luôn luôn > 0 (vì 16 > 0)

=> B luôn dương.

c/ \(C=4x^2+10x+32\\ C=\left(2x\right)^2+2.2x.\frac{5}{2}+\frac{25}{4}+\frac{103}{4}\\C=\left(2x+\frac{5}{2}\right)^2+\frac{103}{4} \)

(Chứng minh tương tự câu a, b)

Chúc bạn học tốt!!

17 tháng 6 2018

mk giúp bạn bài  3 còn bài 1, 2 tự làm nha

a , A = x2  + 10x +30 

= (x2 + 2 . 5 . x +52 ) +5

= (x+5)2 + 5

Vì (x+5)2  >= 0 (luôn đúng)

=> (x+5)2 + 5  luôn luôn dương

25 tháng 9 2019

\(\left(x^2-x^2\right)^3\)x hayz

25 tháng 9 2019

Sửa đề\(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3-\left(y^2+z^2\right)^3\)

\(=\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3+\left(-y^2-z^2\right)^3\)

Đặt \(\hept{\begin{cases}x^2+y^2=a\\z^2-x^2=b\\-y^2-z^2=c\end{cases}}\)

Nhận thấy \(a+b+c=x^2+y^2+z^2-x^2-y^2-z^2=0\)

Mà \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)( bạn tự chứng minh cái này nha )

\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

Thay \(\hept{\begin{cases}a=x^2+y^2\\b=z^2-x^2\\c=-y^2-z^2\end{cases}}\) vào (1) ta được :

\(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3+\left(-y^2-z^2\right)^3=3\left(x^2+y^2\right)\left(z^2-x^2\right)\left(-y^2-z^2\right)\)

Bài 1

a, x2 + 4x + 3

24 tháng 8 2019

a) \(x^2+4x+3\)

\(=x^2+3x+x+3\)

\(=x\left(x+3\right)+\left(x+3\right)\)

\(=\left(x+1\right)\left(x+3\right)\)

5 tháng 11 2018

rút gọn hả bn

5 tháng 11 2018

Rút gọn: \(A=\left(a^2+a-1\right)\left(a^2-a+1\right)\)

\(=a^2a^2-a^2a+a^2+aa^2-aa+a-a^2+a-1\)

\(=a^4-a^3+a^2+a^3-a^2+a-a^2+a-1\)

\(=a^4-a^2+2a-1\)

Vậy \(A=a^4-a^2+2a-1\)

24 tháng 10 2018

Ta có: 3x- 3y- 12x + 12y

= (3x- 3y2) - (12x - 12y)

= 3.(x- y2) - 12.(x - y)

= 3.(x - y).(x + y) - 4.3(x - y)

= 3.(x - y).(x + y - 4)

2 tháng 2 2020

Ta có :

\(x^6+3x^5-2x^4+7x^3-2x^2+3x+1\)

\(=x^6-x^5+x^4+4x^5-4x^4+4x^3+x^4-x^3+x^2+4x^3-4x^2+4x+x^2-x+1\)

\(=x^4\left(x^2-x+1\right)+4x^3\left(x^2-x+1\right)+x^2\left(x^2-x+1\right)+4x\left(x^2-x+1\right)+\left(x^2-x+1\right)\)

\(=\left(x^2-x+1\right)\left(x^4+4x^3+x^2+4x+1\right)\)