K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2019

2x4 -19x3+ 2002x2 -9779x+11670

= 2x^4 -6x^3-13x^3+39x^2+1963x^2-5889x-3890x+11670

= 2x^3(x-3)-13x^2(x-3)+1963x(x-3)-3890(x-3)

=(x-3)(2x^3-13x^2+1963x-3890)

=(x-3)(2x^3-4x^2-9x^2+18x+1945x-3890)

=(x-3)(2x^2(x-2)-9x(x-2)+1945(x-2))

=(x-3)(x-2)(2x^2-9x+1945)

14 tháng 12 2017

nè hôm nay tui gửi hết 100 cái tin nhắn rồi có nick nào nhắn ko cho tui mượn cái để nt với bà ko nhắn đc nữa

14 tháng 12 2017

cho mk hoi thuc hien phep tinh \(\frac{4x-8}{x+4}\)\(\frac{25-x^2}{x^2+x}\)

3 tháng 10 2017

a.) 2x2 - 7xy + 6y2 + 9x - 13y + 5

= (2x -3y)(x-2y) + 5(2x - 3y) -x +2y -5

= (2x - 3y)(x-2y + 5) - (x - 2y + 5)

=(x-2y+5)(2x-3y-1)

a: Ta có: \(-3x^4+20x^3-35x^2-10x+48\)

\(=-\left(3x^4-20x^3+35x^2+10x-48\right)\)

\(=-\left(3x^4-9x^3-11x^3+33x^2+2x^2-6x+16x-48\right)\)

\(=-\left(x-3\right)\left(3x^3-11x^2+2x+16\right)\)

\(=-\left(x-3\right)\left(3x^3-6x^2-5x^2+10x-8x+16\right)\)

\(=-\left(x-3\right)\left(x-2\right)\left(3x^2-5x-8\right)\)

\(=-\left(x-3\right)\left(x-2\right)\left(3x-8\right)\left(x+1\right)\)

b: Ta có: \(-\left(2x^4+7x^3+x^2-7x-3\right)\)

\(=-\left(2x^4-2x^3+9x^3-9x^2+10x^2-10x+3x-3\right)\)

\(=-\left(x-1\right)\left(2x^3+9x^2+10x+3\right)\)

\(=-\left(x-1\right)\left(2x^3+2x^2+7x^2+7x+3x+3\right)\)

\(=-\left(x-1\right)\left(x+1\right)\left(2x^2+7x+3\right)\)

\(=-\left(x-1\right)\left(x+1\right)\cdot\left(x+3\right)\left(2x+1\right)\)

10 tháng 9 2021

bạn giúp mk 2 câu vừa đăng vs

  
22 tháng 9 2019

2x4 - 3x3 - 7x2 +6x+8

= 2x4 - 4x3 + x3 - 2x2 - 5x2 +10x - 4x +8

= 2x3.(x-2) +x2.(x-2) - 5x.(x-2) - 4.(x-2)

= (x-2).(2x3 +x2 - 5x -4)

= (x-2).(2x3 + 2x2 - x2 - x - 4x-4)

= (x-2).(x+2).(2x2 -x -4)

....

3 tháng 9 2016

Đặt \(P\left(x\right)=2x^4+3x^3-9x^2-3x+2\)

Giả sử nhân tử của P(x) có dạng : \(P\left(x\right)=2\left(x^2+ax+b\right)\left(x^2+cx+d\right)=\left(x^2+ax+b\right)\left(2x^2+2cx+2d\right)\)

Khai triển : \(P\left(x\right)=2x^4+2cx^3+2dx^2+2ax^3+2acx^2+2adx+2bx^2+2bcx+2bd\)

\(=2x^4+x^3\left(2c+2a\right)+x^2\left(2d+2ac+2b\right)+x\left(2ad+2cb\right)+2bd\)

Dùng phương pháp hệ số bất định :

\(\Rightarrow\begin{cases}2a+2c=3\\2ac+2b+2d=-9\\2ad+2bc=-3\\bd=1\end{cases}\) . Giải ra được \(\begin{cases}a=-1\\b=-1\\c=\frac{5}{2}\\d=-1\end{cases}\)

Vậy \(P\left(x\right)=2\left(x^2-x-1\right)\left(x^2+\frac{5}{2}x-1\right)=\left(x^2-x-1\right)\left(2x^2+5x-2\right)\)