K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2018

(x + 1)(x + 2)(x + 3)(x + 4) - 24

= x4 + 10x3 + 35x2 + 50x + 24 - 24

= x4 + 10x3 + 35x2 + 50x

11 tháng 9 2018

( x + 1 ). ( x + 2 ) ( x + 3 ) ( x + 4 ) - 24

= ( x2 + 5x + 4 ) .( x2 + 5x + 6 ) - 24

Đặt t = x2 + 5x + 5 

=> ( t - 1 ). ( t + 1 ) - 24

= t2 - 1 - 24 

= t2 - 25

= ( t - 5 ). ( t + 5 )

= ( x2 + 5x + 5 - 5 ) . ( x2 + 5x + 5 + 5 )

= ( x2 + 5x ) . ( x2 + 5x + 10 )

= x. ( x + 5 ) . ( x2 + 5x + 10 )

2 tháng 11 2016

a)x4+2x3+5x2+4x-12

=(x4+2x3+x2)+(4x2+4x)-12

=(x2+x)2+4(x2+x)-12

Đặt t=x2+x

=t2+4t-12=(t-2)(t+6)

=(x2+x-2)(x2+x+6)

=(x-1)(x+2)(x2+x+6)

b)(x+1)(x+2)(x+3)(x+4)+1

=(x2+5x+4)(x2+5x+6)+1

Đặt x2+5x+4=t

t(t+2)+1=t2+2t+1

=(t+1)2=(x2+5x+4+1)2

=(x2+5x+5)2

c)(x+1)(x+3)(x+5)(x+7)+15

=(x2+8x+7)(x2+8x+15)+15

Đặt t=x2+8x+7

t(t+8)+15=(t+3)(t+5)

=(x2+8x+7+3)(x2+8x+7+5)

=(x2+8x+10)(x+2)(x+6)

d)(x+1)(x+2)(x+3)(x+4)-24

=(x2+5x+4)(x2+5x+6)-24

Đặt t=x2+5x+4 

t(t+2)-24=(t-4)(t+6)

=(x2+5x+4-4)(x2+5x+4+6)

=x(x+5)(x2+5x+10)

4 tháng 11 2016

b)(x2+x+1)(x2+x+2)-12

Đặt t=x2+x+1

t(t+1)-12=t2+t-12

=(t-3)(t+4)=(x2+x+1-3)(x2+x+1+4)

=(x2+x-2)(x2+x+5)

=(x-1)(x+2)(x2+x+5)

c)(x2+8x+7)(x2+8x+15)+15

Đặt t=x2+8x+7 

t(t+8)+15=t2+8t+15

=(t+3)(t+5)

=(x2+8x+7+3)(x2+8x+7+15)

=(x2+8x+10)(x2+8x+22)

d)(x+2)(x+3)(x+4)(x+5)-24

=(x2+7x+10)(x2+7x+12)-24

Đặt t=x2+7x+10

t(t+2)-24=(t-4)(t+6)

=(x2+7x+10-4)(x2+7x+10+6)

=(x2+7x+6)(x2+7x+16)

=(x+1)(x+6)(x2+7x+16)

4 tháng 11 2016

a/ Đặt x2 + 4x + 8 = a

Thì đa thức ban đầu thành

a2 + 3ax + 2x= (a2 + 2ax + x2) + (ax + x2)

= (a + x)2 + x(a + x) = (a + x)(a + 2x)

31 tháng 10 2016

Bạn ơi , mình cho bạn ví dụ và hướng dẫn cách làm nha 

f(x)=3x3 – 7x2 + 17x–5f(x)

Hướng dẫn:
±1,±5±1,±5 không là nghiệm của f(x)f(x), như vậy f(x)f(x) không  có nghiệm nguyên. Nên f(x)f(x) nếu có nghiệm thì là nghiệm hữu tỉ
Ta nhận thấy x=x= 1313 là nghiệm của f(x)f(x) do đó f(x)f(x) có một nhân tử là  3x–13x–1. Nên
f(x)= 3x– 7x2 + 17x – 5 = 3x3− x2− 6x2 + 2x + 15x − 5f(x)

= 3x3 – 7x2 + 17x – 5 = 3x3 − x2 − 6x2 + 2x + 15x − 5

= (3x3−x2 ) − ( 6x2 −2x ) + (15x−5) = (3x3 − x2) − (6x2 − 2x) + (15x−5)
= x2 ( 3x−1 )− 2x(3x−1) + 5(3x−1) = (3x − 1)(x2 − 2x + 5 )
Vì x2 − 2x + 5 = (x2 − 2x + 1) + 4 = (x−1)2 + 4>0x2 − 2x + 5= (x2 − 2x + 1) + 4= (x−1)2 + 4>0 với mọi xx nên không phân tích được thành nhân tử nữa
 

31 tháng 10 2016

ình muốn giúp lắm nhưng mình......chưa học.mình mới học lớp 7

29 tháng 10 2018

a. (x2 + x)2 + 4.(x2 + x) - 12 (*)

Đặt x2 + x = a, ta có:

(*) = a2 + 4a - 12

= (a2 + 4a + 4) - 16

= (a + 2)2 - 16

= (a + 6)(a - 2)

= (x2 + x + 6)(x2 + x - 2)

b. (x2 + x+ 1)(x2 + x + 2) - 12 (**)

Đặt x2 + x + 1 = t, ta có:

(**) = t.(t + 1) - 12

= t2 + t - 12

= t2 + 4t - 3t - 12

= t(t + 4) - 3(t + 4)

= (t - 3)(t + 4)

= (x2 + x - 2)(x2 + x + 5)

c. (x + 1)(x + 2)(x + 3)(x + 4) - 24 (***)

= (x2 + 5x + 4)(x2 + 5x + 6) - 24

Đặt x2 + 5x + 4 = k, ta có:

(***) = k.(k + 2) - 24

= k2 + 2x - 24

= k2 + 6k - 4k - 24

= k(k + 6) - 4(k + 6)

= (k - 4)(k + 6)

= (x2 + 5x)(x2 + 5x + 10)

11 tháng 9 2018

Đặt x^2-3x-2=t =>(t+4)(t-4)+12=t-16+12=t-4=(t+2)(t-2)

=>(x^2-3x-2+2)(x^2-3x-2-2)=(x^2-3x)(x^2-3x-4)

11 tháng 9 2018

Đặt \(x^2+x+1=t\) 

Ta có: \(\left(x^2+x+1\right)^2+3x\left(x^2+x+1\right)+2x^2\)

\(=t^2+3xt+2x^2\)

\(=t^2+xt+2xt+2x\)

\(=t\left(t+x\right)+2x\left(t+x\right)\)

\(=\left(t+x\right)\left(t+2x\right)\)

\(=\left(x^2+x+1+x\right)\left(x^2+x+1+2x\right)\)

\(=\left(x^2+2x+1\right)\left(x^2+3x+1\right)\)

\(=\left(x+1\right)^2\left(x^2+3x+1\right)\)

Chúc bạn học tốt.

1) Đa thức\(\left(x^2+x+1\right)\left(X^2+x+2\right)\)-12 được phân tích thành nhân tử là:A)\(\left(x^2+x+5\right)\left(x+2\right)\left(x-1\right)\)B)\(\left(x^2+x-5\right)\left(x+2\right)\left(x-1\right)\)C)\(\left(x^2-x+5\right)\left(x+2\right)\left(x-1\right)\)D)\(\left(x^2+x+5\right)\left(x-2\right)\left(x+1\right)\)2) \(\left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4\) được phân tích thành nhân tử...
Đọc tiếp

1) Đa thức\(\left(x^2+x+1\right)\left(X^2+x+2\right)\)-12 được phân tích thành nhân tử là:

A)\(\left(x^2+x+5\right)\left(x+2\right)\left(x-1\right)\)

B)\(\left(x^2+x-5\right)\left(x+2\right)\left(x-1\right)\)

C)\(\left(x^2-x+5\right)\left(x+2\right)\left(x-1\right)\)

D)\(\left(x^2+x+5\right)\left(x-2\right)\left(x+1\right)\)

2) \(\left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4\) được phân tích thành nhân tử là:

A)\(\left(x^2+5ax-5a^2\right)\left(x^2-5ax+5a^2\right)\)

B)\(\left(x^2-5ax-5a^2\right)\left(x^2+5ax+5a^2\right)\)

C)\(\left(x^2-5ax-5a^2\right)\left(x^2-5ax+5a^2\right)\)

D)\(\left(x^2+5ax+5a^2\right)^{^2}\)

3) Đa thức \(a^3+b^3+c^3-3abc\)  được phân tích thành nhân tử là:

A)\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab+bc-ca\right)\)

B)\(\left(a-b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

C)\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

D)\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab+bc-ca\right)\)

4) Đa thức x(x+1)(x+2)(x+3)+1 được phân tích thành nhân tử là:

A)\(\left(x^2+3x+1\right)\left(x^2+3x-1\right)\)

B)\(\left(x^2+3x+1\right)^{^2}\)

C)\(\left(x^2+3x+1\right)\left(x^2-3x+1\right)\)

D) Cả B và C đều sai  

5) Câu trả lời đúng cho M=\(n^2\left(n+1\right)+2n\left(n+1\right)+360\) với \(n\in Z\)

A)M⋮4

B)M⋮5

C)M⋮6

D)M⋮9

6)Cho \(P=\left(2n+5\right)^{^2}-145\) với \(n\in N\)

A) P⋮4 ; B)P⋮3 ; C) P⋮5 ; D)P⋮6

7) Giá trị của biểu thức \(x^2-y^2-2y-1\) tại

x=502 ; y=497 là:

A) 3000

B)5000

C)4500

D) cả A và B đều sai 

 

 

 

2
AH
Akai Haruma
Giáo viên
29 tháng 1 2023

Bạn nên tách bài ra để đăng. Không nên đăng 1 loạt như thế này.