Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Kết quả 2x(2x – 3). b) Kết quả xy( x 2 – 2xy + 5).
c) Kết quả 2x(x + 1)(x + 4). d) Kết quả 2 5 ( y − 1 ) ( x + y ) .
Lời giải:
a.
\(-16a^4b^6-24a^5b^5-9a^6b^4=-[(4a^2b^3)^2+2.(4a^2b^3).(3a^3b^2)+(3a^3b^2)^2]\)
\(=-(4a^2b^3+3a^3b^2)^2=-[a^2b^2(4b+3a)]^2\)
\(=-a^4b^4(3a+4b)^2\)
b.
$x^3-6x^2y+12xy^2-8x^3$
$=x^3-3.x^2.2y+3.x(2y)^2-(2y)^3=(x-2y)^3$
c.
$x^3+\frac{3}{2}x^2+\frac{3}{4}x+\frac{1}{8}$
$=x^3+3.x^2.\frac{1}{2}+3.x.\frac{1}{2^2}+(\frac{1}{2})^3$
$=(x+\frac{1}{2})^3$
a) Ta có: \(-16a^4b^6-24a^5b^5-9a^6b^4\)
\(=-a^4b^4\left(16b^2+24ab+9a^2\right)\)
\(=-a^4b^4\cdot\left(4b+3a\right)^2\)
b) Ta có: \(x^3-6x^2y+12xy^2-8y^3\)
\(=x^3-3\cdot x^2\cdot2y+3\cdot x\cdot\left(2y\right)^2-\left(2y\right)^3\)
\(=\left(x-2y\right)^3\)
c) Ta có: \(x^3+\dfrac{3}{2}x^2+\dfrac{3}{4}x+\dfrac{1}{8}\)
\(=x^3+3\cdot x^2\cdot\dfrac{1}{2}+3\cdot x\cdot\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3\)
\(=\left(x+\dfrac{1}{2}\right)^3\)
a: =(x^2-x+1)(x^2+x+1)
b: =x^2-6xy+9y^2=(x-3y)^2
c: =5x(x^2-2xy+y^2)
=5x(x-y)^2
d: =(x-3)^2
e: =(2y-z)(4x+7y)
a)HĐT:(x^2+1-x)(x^2+1+x)
b)=x^2-2.x.3y+(3y)^2
c)=5x(x^2-2xy+y^2)
=5x(x-y)^2
d)x^2-2.3.x+3^2
=(x-3)^2
e)(2y-z)+7y(2y-z)
=(2y-z)(1+7y)
a: =(x-y)(5-y)
b: \(=x^2-6x+9-y^2=\left(x-3-y\right)\left(x-3+y\right)\)
Lời giải:
$(4x-2)^2-16x+16x=(4x-2)^2$
----------------
$(3x-4)(3x+4)-(20x^2y-15xy^2):(5xy)$
$=(3x-4)(3x+4)-(4x-3y)$ không phân tích được thành nhân tử.
-----------------------------------
$(x-2)(3x^2+6x+12)-(120^2x^2y^2):(60xy^2)$
$=3(x-2)(x^2+2x+4)-240x$
$=3(x^3-2^3)-240x=3x^3-240x-24$
$=3(x^3-80x-8)$
a) x^2 - 5xy +4y^2= x^2 -xy -4xy+4y^2= (x^2-xy) - (4xy - 4y^2)= x(x-y)-4y(x-y)=(x-y)*(x - 4y)
b) x^2 -y^4+9y -x(9+y-y^3= x^2-y^4 +9y-9x-xy+xy^3= (x^2-xy)-(9x-9y)+(xy^3-y^4)=x(x-y)-9(x-y)+y^3(x-y)=(x-y)*(y^3+x-9)
d) 2u^2+2v^2-5uv=(2u^2-4uv)+(2v^2-uv)=2u(u-2v)+v(2v-u)= 2u(u-2v)-v(u-2v)=(u-2v)*(2u-v)
2: =(2x+1)^2-y^2
=(2x+1+y)(2x+1-y)
3: =x^2(x^2+2x+1)
=x^2(x+1)^2
4: =x^2+6x-x-6
=(x+6)(x-1)
5: =-6x^2+3x+4x-2
=-3x(2x-1)+2(2x-1)
=(2x-1)(-3x+2)
6: =5x(x+y)-(x+y)
=(x+y)(5x-1)
7: =2x^2+5x-2x-5
=(2x+5)(x-1)
8: =(x^2-1)*(x^2-4)
=(x-1)(x+1)(x-2)(x+2)
9: =x^2(x-5)-9(x-5)
=(x-5)(x-3)(x+3)
a) x( x + 2 )( x + 3 )( x + 5 ) + 5
= [ x( x + 5 ) ][ ( x + 2 )( x + 3 ) ] + 5
= ( x2 + 5x )( x2 + 5x + 6 ) + 5 (1)
Đặt t = x2 + 5x
(1) <=> t( t + 6 ) + 5
= t2 + 6t + 5
= t2 + t + 5t + 5
= t( t + 1 ) + 5( t + 1 )
= ( t + 1 )( t + 5 )
= ( x2 + 5x + 1 )( x2 + 5x + 5 )
b) 6x2 - 5xy + y2 = 6x2 - 3xy - 2xy + y2 = 3x( 2x - y ) - y( 2x - y ) = ( 2x - y )( 3x - y )
a,\(x\left(x+2\right)\left(x+3\right)\left(x+5\right)+5\)
\(=x\left(x+5\right)\left(x+2\right)\left(x+3\right)+5\)
\(=\left(x^2+5x\right)\left(x^2+5x+6\right)+5\)(*)
Đặt \(a=x^2+5x\)ta đc:
(*)=\(a\left(a+6\right)+5\)
\(=a^2+6a+5\)
\(=a^2+a+5a+5\)
\(=a\left(a+1\right)+5\left(a+1\right)\)
\(=\left(a+5\right)\left(a+1\right)\)
\(=\left(x^2+5x+5\right)\left(x^2+5x+1\right)\)
b,\(6x^2-3xy-2xy+y^2\)
\(=3x\left(2x-y\right)-y\left(2x-y\right)\)
\(=\left(3x-y\right)\left(2x-y\right)\)