Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a3(c - b2) + b(a - c2) + c3(b - a2) + abc(abc - 1)
= a3c - a3b2 + ab3 - b3c2 + c3b - a2c3 + a2b2c2 - abc
= (a2b2c2 - b3c2) + (a3c - abc) - (a3b2 - ab3) - (a2c3 - c3b)
= b2c2(a2 - b) + ac(a2 - b) - ab2(a2 - b) - c3(a2 - b)
= (a2 - b)(b2c2 + ac - ab2 - c3)
= (a2 - b)[(b2c2 - c3) - (ab2 - ac)]
= (a2 - b)[c2(b2 - c) - a(b2 - c)]
= (a2 - b)(c2 - a)(b2 - c)
\(a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2-a^3-b^3-c^3+4abc\)
\(=a\left(b-c\right)^2-a^3+4abc+b\left(c-a\right)^2-b^3+c\left(a-b\right)^2-c^3\)
\(=a\left[\left(b-c\right)^2+4bc-a^2\right]+b\left[\left(c-a\right)^2-b^2\right]+c\left[\left(a-b\right)^2-c^2\right]\)
\(=a\left[\left(b+c\right)^2-a^2\right]+b\left[\left(c-a\right)^2-b^2\right]+c\left[\left(a-b\right)^2-c^2\right]\)
\(=a\left(b+c+a\right)\left(b+c-a\right)+b\left(c-a+b\right)\left(c-a-b\right)+c\left(a-b+c\right)\left(a-b-c\right)\)
\(=\left(b+c-a\right)\left[a\left(b+c+a\right)+b\left(c-a-b\right)\right]+c\left(a-b+c\right)\left(a-b-c\right)\)
\(=\left(b+c-a\right)\left[ab+ac+a^2+bc-ab-b^2\right]+c\left(a-b+c\right)\left(a-b-c\right)\)
\(=\left(b+c-a\right)\left[c\left(a+b\right)+\left(a-b\right)\left(a+b\right)\right]+c\left(a-b+c\right)\left(a-b-c\right)\)
\(=\left(b+c-a\right)\left(a+b\right)\left(a-b+c\right)+c\left(a-b+c\right)\left(a-b-c\right)\)
\(=\left(a-b+c\right)\left[b^2-\left(a-c\right)^2\right]\)
\(=\left(a-b+c\right)\left(b+a-c\right)\left(b-a+c\right)\)
Đặt A là tên biểu thức; \(a+b-c=x;b+c-a=y;c+a-b=z\)
Khi đó \(x+y+z=a+b-c+b+c-a+c+a-b=a+b+c\)
=>\(A=\left(x+y+z\right)^3-x^3-y^3-z^3=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)
\(=\left(x+y\right)^3+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)
\(=x^3+y^3+3xy\left(x+y\right)+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)
\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)
\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
\(=3\left(a+b-c+b+c-a\right)\left(b+c-a+c+a-b\right)\left(c+a-b+a+b-c\right)\)
\(=3.2b.2c.2a=24abc\)
A = ( a + b + c )3 + ( a - b - c )3 + ( b - c - a )3 + ( c - a - b )3
= [ ( a + b ) + c ]3 + [ ( a - b ) - c ]3 + [ ( - c ) - ( a - b ) ] 3 + [ c - ( a + b ) ]3
= ( a + b )3 + 3.( a + b )2.c + 3.( a + b ).c2 + c3 + ( a - b )3 - 3.( a - b )2.c + 3.( a - b ).c2 - c3 + ( - c3 ) + 3.( a - b )2.c - 3.( a - b ).c2 -(a- b)3
+ c3 + 3.( a + b )2.c - 3.( a + b ).c2 - ( a + b )3
= 6.( a + b )2 .c
\(a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)\))
\(=a^3\left(b-c\right)-b^3\left(a-c\right)+c^3\left(a-b\right)\)
\(=a^3\left(b-c\right)-b^3\left[\left(b-c\right)+\left(a-b\right)\right]+c^3\left(a-b\right)\)
\(=a^3\left(b-c\right)-b^3\left(b-c\right)-b^3\left(a-b\right)+c^3\left(a-b\right)\)
\(=\left(b-c\right)\left(a^3-b^3\right)-\left(a-b\right)\left(b^3-c^3\right)\)
\(=\left(b-c\right)\left(a-b\right)\left(a^2+ab+b^2\right)-\left(a-b\right)\left(b-c\right)\left(b^2+bc+c^2\right)\)
\(=\left(a-b\right)\left(b-c\right)\left[\left(a^2+ab+b^2\right)-\left(b^2+bc+c^2\right)\right]\)
\(=\left(a-b\right)\left(b-c\right)\left(a^2-c^2+ab-bc\right)\)
\(=\left(a-b\right)\left(b-c\right)\left[\left(a-c\right)\left(a+c\right)+b\left(a-c\right)\right]\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\left(a+b+c\right)\)
a(b3-c3) -b(b3-c3+a3-b3)+c(a3-b3)
=a(b3-c3)-b(b3-c3)-b(a3-b3)+c(a3-b3)
=(b3-c3)(a-b)-(a3-b3)(b-c)
=(b-c)(b2+cb+c2)(a-b)-(a-b)(a2+ab+b2)(b-c)
=(b-c)(a-b)(b2+Cb+c2-a2-ab-b2)
=(b-c)(a-b)(c2+cb-ab-a2)
=(b-c)(a-b)[(c-a)(c+a)+b(c-a)]
=(b-c)(a-b)(c-a)(a+c+b)