K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2020

cungf lớp nek

12 tháng 9 2020

Cái này làm sao mà phân tích được ;-; Tớ bày cách khác nhé :>

9x2 + y2 + 2z2 - 18x + 4z - 6y + 20

= ( 9x2 - 18x + 9 ) + ( y2 - 6y + 9 ) + ( 2z2 + 4z + 2 )

= ( 3x - 3 )2 + ( y - 3 )2 + 2( z2 + 2z + 1 )

= ( 3x - 3 )2 + ( y - 3 )2 + 2( z + 1 )2

19 tháng 12 2021

\(=\left(x^2+2x\right)^2+9\left(x^2+2x\right)+20\)

\(=\left(x^2+2x+4\right)\left(x^2+2x+5\right)\)

4 tháng 3 2021

\(\Rightarrow\left(x^2+2x\right)^2+9\left(x^2+2x\right)+20=\left(x^2+2x\right)^2+4\left(x^2+2x\right)+5\cdot\left(x^2+2x\right)+20=\left(x^2+2x\right)\left(x^2+2x+4\right)+5\left(x^2+2x+4\right)=\left(x^2+2x+4\right)\left(x^2+2x+5\right)\)

NV
2 tháng 3 2021

\(\left(x^2+2x\right)^2+4\left(x^2+2x\right)+5\left(x^2+2x\right)+20\)

\(=\left(x^2+2x\right)\left(x^2+2x+4\right)+5\left(x^2+2x+4\right)\)

\(=\left(x^2+2x+5\right)\left(x^2+2x+4\right)\)

2 tháng 3 2021

(x2+2x)+9x2+18x+20

=(x2+2x)+9(x2+2x)+20

Đặt t=x2+2x đc:

t+9t+20=10t+20=10(t+2)

Thay t=x2+2x vào đc:

10(x2+2x+2)

10 tháng 11 2020

\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+2\left(z^2+2z+1\right)=0\)

\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)(*)

Vì \(\left(x-1\right)\ge0;\left(y-3\right)^2\ge0;\left(z+1\right)^2\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-3=0\\z+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=1\\y=3\\z=-1\end{cases}}}\)

10 tháng 11 2020

pt ⇔ ( 9x2 - 18x + 9 ) + ( y2 - 6y + 9 ) + ( 2z2 + 4z + 2 ) = 0

    ⇔ 9( x2 - 2x + 1 ) + ( y - 3 )2 + 2( z2 + 2z + 1 ) = 0

    ⇔ 9( x - 1 )2 + ( y - 3 )2 + 2( z + 1 )2 = 0

Vì \(\hept{\begin{cases}9\left(x-1\right)^2\ge0\forall x\\\left(y-3\right)^2\ge0\forall y\\2\left(z+1\right)^2\ge0\forall z\end{cases}}\Rightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2\ge0\forall x,y,z\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-1=0\\y-3=0\\z+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}\)

Vậy 

22 tháng 2 2017

9x2 + y2 + 2z2 - 18x + 4z - 6y + 20 = 0

<=> 9x2 - 18x + 9 + y2 - 6y + 9 + 2x2 + 4z + 2 = 0

<=> 9(x2 - 2x + 1) + (y - 3)2 + 2(z2 + 2z + 1) = 0

<=> 9(x - 1)2 + (y - 3)2 + 2(z + 1)2 = 0

<=> \(\left\{\begin{matrix}x-1=0\\y-3=0\\z+1=0\end{matrix}\right.\)

<=> \(\left\{\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)

5 tháng 9 2021

\(a,9x^2+y^2+2z^2-18x+4z-6y+20=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)

\(b,5x^2+5y^2+8xy+2y-2x+2=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

\(c,5x^2+2y^2+4xy-2x+4y+5=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

\(d,x^2+4y^2+z^2=2x+12y-4z-14\\ \Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)

\(e,x^2+y^2-6x+4y+2=0\\ \Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)

Pt vô nghiệm do ko có 2 bình phương số nguyên có tổng là 11

 

 

e: Ta có: \(x^2-6x+y^2+4y+2=0\)

\(\Leftrightarrow x^2-6x+9+y^2+4y+4-11=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)

Dấu '=' xảy ra khi x=3 và y=-2

11 tháng 9 2015

 

(x2+2x)2+9x2+18x+20

=(x2+2x)2+9(x2+2x)+20

Đặt t=x2+2x ta được:

t2+9t+20=t2+4t+5t+20

=t.(t+4)+5.(t+4)

=(t+4)(t+5)

thay t=x2+2x ta được:

(x2+2x+4)(x2+2x+5)

Vậy (x2+2x)2+9x2+18x+20=(x2+2x+4)(x2+2x+5)