Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Từ giả thiết ta có
(x2+y2+z2)(x+y+z)2+(xy+yz+zx)2
=(x2+y2+z2)(x2+y2+z2+2xy+2yz+2zx)+(xy+yz+zx)2
Đặt x2+y2+z2=a
xy+yz+zx=b
=>(x2+y2+z2)(x2+y2+z2+2xy+2yz+2zx)+(xy+yz+zx)2
=a(a+2b)+b2
=a2+2ab+b2
=(a+b)2
=(x2+y2+z2+xy+yz+zx)2
câu b hơi dài mình gửi sau nhé
Ta có: 2(x^4+y^4+z^4)-(x^2+y^2+z^2)^2-2(x^2+y^2+z^2)(x+y+z)^2+(x+y+z)^4
Gọi x^4+y^4+z^4=a
x^2+y^2+z^2=b
x+y+z=c
=>2(x^4+y^4+z^4)-(x^2+y^2+z^2)^2-2(x^2+y^2+z^2)(x+y+z)^2+(x+y+z)^4=2a-b^2-2bc^2+c^4
=2a-2b^2+b^2-2bc^2+c^4
=2(a-b^2)+(b+c^2)^2
Ta có
2(a-b2)=2[x^4+y^4+z^4-(x^2+y^2+z^2)2]
=2[x^4+y^4+z^4-x^4-y^4-z^4-2x2y2-2y2z2-2z2x2]
=2.(-2)(x2y2+y2z2+z2x2)
=-4(x2y2+y2z2+z2x2)
Lại có
(b+c^2)^2
=[(x^2+y^2+z^2)+(x+y+z)2]2
=[(x^2+y^2+z^2)-(x^2+y^2+z^2)-2(xy+yz+zx)]2
=4(xy+yz+zx)2
=>2(a-b^2)+(b+c^2)^2
=-4(x2y2+y2z2+z2x2)+4(xy+yz+zx)2
=8xyz(x+y+z)
nâng cao phát triển toán 8 tập 1 mình ngại viết nên bạn vào đó xem nhé
b: \(=\dfrac{12\left(y-z\right)^4+3\left(y-z\right)^5}{6\left(y-z\right)^2}=2\left(y-z\right)^2+\dfrac{1}{2}\left(y-z\right)^3\)
Ây za,mik ko bt có đúng ko nhưng mik thử làm nhé.
Đặt \(x^4+y^4+z^4=a;x^2+y^2+z^2=b;x+y+z=c\)
\(\Rightarrow M=2a-b^2-2bc^2+c^4\)
\(M=2a-2b^2+b^2-2bc^2+c^4\)
\(M=2\left(a-b^2\right)+\left(b-c^2\right)^2\)
Mà:
\(a-b^2=-2\left(x^2y^2+y^2z^2+z^2x^2\right)\)
\(b-c^2=-2\left(xy+yz+zx\right)\)
Khi đó:
\(M=-4\left(x^2y^2+y^2z^2+z^2x^2\right)+4\left(xy+yz+zx\right)^2\)
\(M=-4x^2y^2-4y^2z^2-4z^2x^2+4x^2y^2++4y^2z^2+4z^2x^2+4z^2x^2+8x^2yz+8xy^2z+8xyz^2\)
\(M=8xyz\left(x+y+z\right)\)