\(x^2+2xy-8y^2+2xz+14yz-3z^2\)

2.

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2018

thế bạn đã học nhân tử chung, hằng đảng thức đáng nhớ , nhốm hạng tử chưa

ý mình là học hết chưa ý

29 tháng 6 2017

a) \(12x^5y+24x^4y^2+12x^3y^3\)

\(=12x^3y\left(x^2+2xy+y^2\right)\)

\(=12x^3y\left(x+y\right)^2\)

b) \(x^2-2xy-4+y^2\)

\(=\left(x-y\right)^2-2^2\)

\(=\left(x-y-2\right)\left(x-y+2\right)\)

g) \(12xy-12xz+3x^2y-3x^2z\)

\(=12x\left(y-z\right)+3x^2\left(y-z\right)\)

\(=3x\left(4+x\right)\left(y-z\right)\)

e) \(16x^2-9\left(x^2+2xy+y^2\right)\)

\(=\left(4x\right)^2-\left[3\left(x+y\right)\right]^2\)

\(=\left(4x-3\left(x+y\right)\right)\left(4x+3\left(x+y\right)\right)\)

\(=\left(x+y\right)\left(7x+y\right)\)

d) làm tương tự như phần g chỉ khác là phải nhóm( nhóm xen kẽ), phần f cũng vậy

5 tháng 8 2017

1) \(\left(3x^2-3y^2\right)-\left(12x-12y\right)\)

\(=3xy\left(x-y\right)-12\left(x-y\right)\)

\(=\left(3xy-12\right)\left(x-y\right)\)

2) \(4x^3+4xy^2+8x^2y-16x\)

\(=\left(4x^3-16x\right)+\left(4xy^2+8x^2y\right)\)

\(=4x\left(x^2-4\right)+4xy\left(y+2x\right)\)

5 tháng 8 2017

Ta có : 3x2 - 3y2 - 12x + 12y 

= (3x2 - 3y2) - (12x - 12y)

= 3(x2 - y2) - 12(x - y)

= 3(x - y)(x + y) - 4.3.(x - y)

= 3(x - y)(x + y - 4)

4 tháng 6 2017

a) \(5x-10x^2\) = \(5x\left(1-2x\right)\)

b) Mạn phép sửa đề:

\(\dfrac{1}{2}x\left(x^2-4\right)+4\left(x+2\right)\) = \(\left(x+2\right)\left[\dfrac{1}{2}x\left(x-2\right)+4\right]\)

= \(\left(x+2\right)\left(\dfrac{1}{2}x^2-x+4\right)\)

c) \(x^4-y^6=\left(x^2-y^3\right)\left(x^2+y^3\right)\)

4 tháng 6 2017

e) \(x^3-4x^2+4x-1=x^3-x^2-3x^2+3x+x-1\)

= \(x^2\left(x-1\right)-3x\left(x-1\right)+\left(x-1\right)\)

= \(\left(x-1\right)\left(x^2-3x+1\right)\)

g) \(x^4+6x^3-12x^2-8x\)

= \(x\left(x^3-2x^2+8x^2-16x+4x-8\right)\)

= \(x\left[x^2\left(x-2\right)+8x\left(x-2\right)+4\left(x-2\right)\right]\)

= \(x\left(x-2\right)\left(x^2+8x+4\right)\)

h) \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\) (*)

Đặt \(x^2+4x+8=a\) => (*) trở thành:

\(a^2+3ax+2x^2\) = \(a^2+ãx+2ax+x^2\)

= \(a\left(a+x\right)+2x\left(a+x\right)\)

= \(\left(a+x\right)\left(a+2x\right)\) (1)

Thay \(a=x^2+4x+8\) vào (1) ta được:

\(\left(x^2+5x+8\right)\left(x^2+6x+8\right)\)

=\(\left(x^2+5x+8\right)\left(x^2+2x+4x+8\right)\)

= \(\left(x^2+5x+8\right)\left[x\left(x+2\right)+4\left(x+2\right)\right]\)

= \(\left(x+2\right)\left(x+4\right)\left(x^2+5x+8\right)\)

P/s: Còn câu f đang suy nghĩ!

Câu 2 nha

\(a,x^4+2x^3+x^2\)

\(=x^2\left(x^2+2x+1\right)\)

\(=x^2\left(x+1\right)^2\)

\(c,x^2-x+3x^2y+3xy^2+y^3-y\)

\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)

\(=\left(x+y\right)^3-\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)