Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+y\left(1-3x^2\right)+x\left(3y^2-1\right)-y^3\)
\(=x^3-3x^2y+3xy^2-y^3+y-x\)
\(=\left(x-y\right)^3-\left(x-y\right)\)
phân tích đa thức thành nhân tử cơ mà
=(x-y)3-(x-y)
=(x-y)[(x-y)2-1]
a)(x+y)2-(x-y)2
=(x+y-x+y)(x+y+x-y)
=2y.2x=4xy
b)(3x+1)2-(x+1)2
=(3x+1-x-1)(3x+1+x+1)
=2x.(4x+2)
=4x(2x+1)
c) x3+y3+z3-3xyz
= (x+y)3- 3xy(x+y) +z3-3xyz
=(x+y+z)( x2+2xy+y2-xz-yz+z2)-3xy(x+y+z)
=(x+y+z)(x2+y2+z2-xy-xz-yz)
Phân tích đa thức sau thành nhân tử :
a) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
b) \(x^3+y^3+z^3-3xyz\)
1 ) \(x^2+xy+x=x\left(x+1+y\right)\)
2 ) \(3x^2\left(x-1\right)+5x\left(1-x\right)=3x^2\left(x-1\right)-5x\left(x-1\right)=\left(3x^2-5x\right)\left(x-1\right)\)
3 ) \(2x\left(x+y\right)-3x-3y=2x\left(x+y\right)-3\left(x+y\right)=\left(2x-3\right)\left(x+y\right)\)
4 ) \(x\left(x-y\right)+y\left(y-x\right)=x\left(x-y\right)-y\left(x-y\right)=\left(x-y\right)\left(x-y\right)=\left(x-y\right)^2\)
5 ) \(4x^2-36=4\left(x^2-9\right)=4\left(x+3\right)\left(x-3\right)\)
\(\left(2x-y\right)\left(x-y\right)-\left(3y-4x\right)^2+\left(y-2x\right)\left(2y-3x\right)\)
=(2x-y)(x-y)-(2x-y)(2y-3x)-(4x-3y)2
=(2x-3y)(x-y-2y+3x)-(4x-3y)2
=(2x-3y)(4x-3y)-(4x-3y)2
=(4x-3y)(2x-3y-4x+3y)
=(4x-3y))(-2x)
a) \(3^2\left(y-x\right)+6x^2\left(x-y\right)^2\)
\(=3\left(y-x\right)\left[3+2x^2\left(y-x\right)\right]\)
\(=3\left(y-x\right)\left(3+2x^2y-2x^3\right)\)
b) \(x^4-3x^3+3x-1\)
\(=\left(x^4+x^3\right)-\left(4x^3+4x^2\right)+\left(4x^2+4x\right)-\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3-4x^2+4x-1\right)\)
\(=\left(x+1\right)\left[\left(x^3-x^2\right)-\left(3x^2-3x\right)+\left(x-1\right)\right]\)
\(=\left(x+1\right)\left(x-1\right)\left(x^2-3x+1\right)\)
Bài 2:
1: \(\left(2x-1\right)^2-4\left(2x-1\right)=0\)
=>\(\left(2x-1\right)\left(2x-1-4\right)=0\)
=>(2x-1)(2x-5)=0
=>\(\left[{}\begin{matrix}2x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)
2: \(9x^3-x=0\)
=>\(x\left(9x^2-1\right)=0\)
=>x(3x-1)(3x+1)=0
=>\(\left[{}\begin{matrix}x=0\\3x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
3: \(\left(3-2x\right)^2-2\left(2x-3\right)=0\)
=>\(\left(2x-3\right)^2-2\left(2x-3\right)=0\)
=>(2x-3)(2x-3-2)=0
=>(2x-3)(2x-5)=0
=>\(\left[{}\begin{matrix}2x-3=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)
4: \(\left(2x-5\right)\left(x+5\right)-10x+25=0\)
=>\(2x^2+10x-5x-25-10x+25=0\)
=>\(2x^2-5x=0\)
=>\(x\left(2x-5\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{2}\end{matrix}\right.\)
Bài 1:
1: \(3x^3y^2-6xy\)
\(=3xy\cdot x^2y-3xy\cdot2\)
\(=3xy\left(x^2y-2\right)\)
2: \(\left(x-2y\right)\left(x+3y\right)-2\left(x-2y\right)\)
\(=\left(x-2y\right)\cdot\left(x+3y\right)-2\cdot\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+3y-2\right)\)
3: \(\left(3x-1\right)\left(x-2y\right)-5x\left(2y-x\right)\)
\(=\left(3x-1\right)\left(x-2y\right)+5x\left(x-2y\right)\)
\(=(x-2y)(3x-1+5x)\)
\(=\left(x-2y\right)\left(8x-1\right)\)
4: \(x^2-y^2-6y-9\)
\(=x^2-\left(y^2+6y+9\right)\)
\(=x^2-\left(y+3\right)^2\)
\(=\left(x-y-3\right)\left(x+y+3\right)\)
5: \(\left(3x-y\right)^2-4y^2\)
\(=\left(3x-y\right)^2-\left(2y\right)^2\)
\(=\left(3x-y-2y\right)\left(3x-y+2y\right)\)
\(=\left(3x-3y\right)\left(3x+y\right)\)
\(=3\left(x-y\right)\left(3x+y\right)\)
6: \(4x^2-9y^2-4x+1\)
\(=\left(4x^2-4x+1\right)-9y^2\)
\(=\left(2x-1\right)^2-\left(3y\right)^2\)
\(=\left(2x-1-3y\right)\left(2x-1+3y\right)\)
8: \(x^2y-xy^2-2x+2y\)
\(=xy\left(x-y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(xy-2\right)\)
9: \(x^2-y^2-2x+2y\)
\(=\left(x^2-y^2\right)-\left(2x-2y\right)\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-2\right)\)
x3+y(1-3x2)+x(3y2-1)-y3
= x3-3x2y+3xy2-y3+y-x
=(x-y)3 -(x-y)
=(x-y)(x2-2xy+y2-1)
cái chỗ kia giải thích dùm mìh đy : \(x^3-3x^2y+3xy^2-y^3+y-x\)