Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
\(\left(a^2-b^2\right)+\left(a^3+b^3\right)-a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)\left(a-b\right)+\left(a+b\right)\left(a^2-ab+b^2\right)-a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)\left(a-b+a^2+b^2-ab-a^2b^2\right)\)
\(=\left(a+b\right)\left[b^2\left(1-a^2\right)+a\left(1+a\right)-b.\left(1+a\right)\right]\)
\(=\left(a+b\right)\left(a+1\right)\left(b^2+a-b\right)\)
Bài 1:
a: \(4a^2-6b=2\left(2a^2-3b\right)\)
b: \(m^3n-2m^2n^2-mn\)
\(=mn\left(m^2-2mn-1\right)\)
Bài 1:
a) \(4a^2-6b=2\left(a^2-3b\right)\)
b) \(=mn\left(m^2-2mn-1\right)\)
Bài 2:
a) \(=4\left(u-2\right)^2+v\left(u-2\right)=\left(u-2\right)\left(4u-8+v\right)\)
b) \(=a\left(a-b\right)^3-b\left(a-b\right)^2-b^2\left(a-b\right)=\left(a-b\right)\left[a\left(a-b\right)^2-b\left(a-b\right)-b^2\right]=\left(a-b\right)\left(a^3-2a^2b+ab^2-ab+b^2-b^2\right)=\left(a-b\right)\left(a^3-2a^2b+ab^2-ab\right)\)
Bài 1.
\(a\Big) 9(4x+3)^2=16(3x-5)^2\\\Leftrightarrow 9[(4x)^2+2\cdot 4x\cdot3+3^2]=16[(3x)^2-2\cdot3x\cdot5+5^2]\\\Leftrightarrow9(16x^2+24x+9)=16(9x^2-30x+25)\\\Leftrightarrow 144x^2+216x+81=144x^2-480x+400\\\Leftrightarrow (144x^2-144x^2)+(216x+480x)=400-81\\\Leftrightarrow 696x=319\\\Leftrightarrow x=\dfrac{11}{24}\\Vậy:x=\dfrac{11}{24}\\---\)
\(b\Big)(x-3)^2=4x^2-20x+25\\\Leftrightarrow(x-3)^2=(2x)^2-2\cdot2x\cdot5+5^2\\\Leftrightarrow(x-3)^2=(2x-5)^2\\\Leftrightarrow (x-3)^2-(2x-5)^2=0\\\Leftrightarrow (x-3-2x+5)(x-3+2x-5)=0\\\Leftrightarrow (-x+2)(3x-8)=0\\\Leftrightarrow \left[\begin{array}{} -x+2=0\\ 3x-8=0 \end{array} \right.\\\Leftrightarrow \left[\begin{array}{} -x=-2\\ 3x=8 \end{array} \right.\\\Leftrightarrow \left[\begin{array}{} x=2\\ x=\dfrac{8}{3} \end{array} \right.\\Vậy:...\)
a: \(x^4-2x^3+x^2-2x\)
\(=\left(x^4-2x^3\right)+\left(x^2-2x\right)\)
\(=x^3\left(x-2\right)+x\left(x-2\right)\)
\(=x\left(x-2\right)\left(x^2+1\right)\)
b: \(x^4+x^3-8x-8\)
\(=\left(x^4+x^3\right)-\left(8x+8\right)\)
\(=x^3\left(x+1\right)-8\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3-8\right)\)
\(=\left(x+1\right)\left(x-2\right)\left(x^2+2x+4\right)\)
a) 16(12 t 2 +1).
b) Gợi ý x 3 + y 3 = ( x + y ) 3 - 3xy(x + y)
(x + y - z)( x 2 + y 2 + z 2 - xy + xz + yz).
a/ \(\left(a^2-b^2+1\right)\left(a^2-ab+b^2\right)\left(a^2+ab+b^2\right)\)
b/ \(\left(x+y-1\right)\left(y^2-xy+y+x^2+x+1\right)\)
b) 8a3 + 4a2b - 2ab2 – b3 = (8a3 – b3 ) + (4a2b - 2ab2 )
= (2a – b)(4a2 + 2ab + b2) + 2ab(2a – b)
= (2a – b)( 4a2 + 2ab + b2 + 2ab) = (2a – b)(2a + b)2