Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu này mih biết làm nhưng pp nhẩm nghiệm là sao bạn
bạn có thể cho mih vd đi\ược ko
a) 2x3-5x2+8x-3
=2x3-x2-4x2+2x+6x-3
=x2(2x-1)-2x(2x-1)+3(2x-1)
=(2x-1)(x2-2x+3)
a,2x3-5x2+8x-3
=2x3-x2-4x2+2x+6x-3
=x2(2x-1)-2x(2x-1)+3(2x-1)
=(2x-1)(x2-2x+3)
a) x2 - 3x + 2 = x2 - x - 2x + 2 = x( x - 1 ) - 2( x - 1 ) = ( x - 1 )( x - 2 )
b) 2x2 - x - 6 = 2x2 - 4x + 3x - 6 = 2x( x - 2 ) + 3( x - 2 ) = ( x - 2 )( 2x + 3 )
c) x2 - 5x - 6 = x2 + x - 6x - 6 = x( x + 1 ) - 6( x + 1 ) = ( x + 1 )( x - 6 )
d) x2 + 8x + 7 = x2 + x + 7x + 7 = x( x + 1 ) + 7( x + 1 ) = ( x + 1 )( x + 7 )
e) 3x2 + 2x - 5 = 3x2 - 3x + 5x - 5 = 3x( x - 1 ) + 5( x - 1 ) = ( x - 1 )( 3x + 5 )
f) 4x2 - 3x - 1 = 4x2 - 4x + x - 1 = 4x( x - 1 ) + ( x - 1 ) = ( x - 1 )( 4x + 1 )
a \(x^2-3x+2=x^2-x-2x+2=\left(x-1\right)\left(x-2\right)\)
b, \(2x^2-x-6=2x^2-4x+3x-6=\left(x-2\right)\left(2x+3\right)\)
c, \(x^2-5x-6=x^2+x-6x-6=\left(x+1\right)\left(x-6\right)\)
d, \(x^2+8x+7=x^2+x+7x+7=\left(x+1\right)\left(x+7\right)\)
e, \(3x^2+2x-5=3x^2-3x+5x-5=\left(x-1\right)\left(3x+5\right)\)
f, \(4x^2-3x-1=4x^2-4x+x-1=\left(x-1\right)\left(4x+1\right)\)
câu này là câu b và c nhé nếu là câu a thì cái bt = cái khác
Gỉa sử : ( bt = biểu thức :D )
\(bt=\left(x^2+ax+b\right)\left(x^2+cx+d\right)=x^4+\left(a+c\right)x^3+\left(d+ac+b\right)x^2+\left(bc+ad\right)x+bd\)
Ta có : \(\hept{\begin{cases}a+c=-6\\d+ac+b=14\\bc+ad=-7and:bd=1\end{cases}}\)(do không có ngoặc 4
Đến đây thì giải ra như hpt thôi
Dạng này được cái không cần sáng tạo già cả chỉ cần theo công thức nhưng khá khó trong việc giải hệ
a) Giả sử
\(4x^4+4x^3+5x^2+2x+1=4\left(x^2+ax+b\right)\left(x^2+cx+d\right)\)
Khai triển vế trái = \(4x^4+4\left(a+c\right)x^3+4\left(b+d+ac\right)x^2+4\left(ad+bc\right)x+4bd\)
Rồi sử dụng đồng nhất thức, ta có hpt gồm các pt
\(4\left(a+c\right)=4\),\(4b+4d+4ac=5\),\(4ad+4bc=2\),\(4bd=1\)
Rồi ...
Các câu còn lại tương tự:))
a) Ta thấy x = 1 là nghiệm của \(f\left(x\right)=3x^3-x^2+2x-4\) nên \(f\left(x\right)\) sẽ có dạng \(f\left(x\right)=\left(x-1\right)\left(ax^2+bx+c\right)\)
Bằng cách chia f(x) cho x - 1 được các hệ số tương ứng : a = 3 , b = 2 , c =4
=> f(x) = (x-1)(3x2+2x+4)
b) Tương tự, ta cũng phân tích được : x3-100x2+50x+49=(x-1)(x2-99x-49)
Mình nghĩ vậy thôi .Sorry nha . Tại vì tìm x thì phải bằng bao nhiêu chứ
a/ \(=3y^2-6y-2x+1\)
b/ \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
c/ \(=\left(2-x\right)^3\)
d/ \(=xy^2+x^2y+3xy+x^2y+x^3+3x^2-3xy-3x^2-9x\)
\(=xy\left(y+x+3\right)+x^2\left(y+x+3\right)-3x\left(y+x+3\right)\)
\(=\left(xy+x^2-3x\right)\left(y+x+3\right)=x\left(y+x-3\right)\left(y+x+3\right)\)
e/ \(=xy-x^2+2x-y^2+xy-2y\)
\(=x\left(y-x+2\right)-y\left(y-x+2\right)=\left(x-y\right)\left(y-x+2\right)\)
a) =(2x+3y-1)2
b)=-(x-1)3
c)=-(x3-6x2+12x-8)=-(x-2)3
d)x3 + 2x2y + xy2 – 9x
= x(x2 + 2xy + y2 -9)
= x[(x2 + 2xy + y2) - 32]
= x[(x + y)2 - 32]
= x (x + y – 3)(x + y + 3)
e) 2x-2y-x2+2xy-y2=2(x-y)-(x-y)2=(x-y)(2-x+y)
a) x^2 - 4 + ( x - 2 )^2
= ( x- 2 )(x + 2 ) + ( x- 2)^2
= ( x - 2 ) ( x + 2 + x - 2 )
= 2x (x-2)
b) x^3 - 2x^2 + x - xy^2
= x ( x^2 - 2x + 1 - y^2)
= x [ ( x - 1 )^2 - y^2 ]
= x(x - 1 - y)( x - 1 + y )
c) x^3 - 4x^2 - 12x + 27
= x^3 + 3x^2 - 7x^2 - 21x + 9x + 27
= x^2 ( x + 3 ) - 7x ( x+ 3 ) + 9(x + 3 )
Để hai lần nha
= ( x+ 3 )(x^2 - 7x + 9 )
\(x^2-4+\left(x-2\right)^2\)
\(=\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2\)
\(=\left(x-2\right)\left(x+2+x-2\right)\)
\(=2x\left(x-2\right)\)
hk tốt
^^
nhìu quá @@