K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`#3107.101107`

`(4x - 1)^2 - 121`

`= (4x - 1)^2 - (11)^2`

`= (4x - 1 - 11)(4x - 1 + 11)`

`= (4x - 12)(4x + 10)`

`= 4(x - 3) * 2(2x + 5)`

`= 8(x - 3)(2x + 5)`

_____

`x^6 - y^6`

`= (x^3)^2 - (y^3)^2`

`= (x^3 - y^3)(x^3 + y^3)`

`= (x - y)(x^2 + xy + y^2)(x + y)(x^2 - xy + y^2)`

`= (x - y)(x + y)(x^2 + xy + y^2)`

____

Sử dụng các HĐT:

`@` `A^2 - B^2 = (A - B)(A + B)`

`@` `A^3 - B^3 = (A - B)(A^2 + AB + B^2)`

`@` `A^3 + B^3 = (A + B)(A^2 - AB + B^2).`

11 tháng 12 2023

a: \(\left(4x-1\right)^2-121\)

\(=\left(4x-1\right)^2-11^2\)

\(=\left(4x-1-11\right)\left(4x-1+11\right)\)

\(=\left(4x-12\right)\left(4x+10\right)\)

\(=8\left(x-3\right)\left(2x+5\right)\)

b: \(x^6-y^6\)

\(=\left(x^3-y^3\right)\left(x^3+y^3\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)\)

20 tháng 7 2018

g ) \(4x^2\left(x-2y\right)-\left(4x+1\right)\left(2y-x\right)\)

\(=4x^2\left(x-2y\right)+\left(4x+1\right)\left(x-2y\right)\)

\(=\left(4x^2+4x+1\right)\left(x-2y\right)\)

\(=\left(2x+1\right)^2\left(x-2y\right)\)

h ) \(x^2-ax^2-y+ay+cx^2-cy\)

\(=x^2\left(1-a+c\right)-y\left(1-a+c\right)\)

\(=\left(x^2-y\right)\left(1-a+c\right)\)

11 tháng 10 2020

Rút gọn thôi chứ phân tích sao được ._.

( x - 3 )2 - ( 4x + 5 )2 - 9( x + 1 )2 - 6( x - 3 )( x + 1 )

= x2 - 6x + 9 - ( 16x2 + 40x + 25 ) - 9( x2 + 2x + 1 ) - 6( x2 - 2x - 3 )

= x2 - 6x + 9 - 16x2 - 40x - 25 - 9x2 - 18x - 9 - 6x2 + 12x + 18

= -30x2 - 52x - 7

11 tháng 10 2020

Sửa đề lại 1 chút là phân tích được mà bn Quỳnh:))

Ta có: \(\left(x-3\right)^2-\left(4x+5\right)^2+9\left(x+1\right)^2-6\left(x-3\right)\left(x+1\right)\)

\(=\left[\left(x-3\right)^2-6\left(x-3\right)\left(x+1\right)+9\left(x+1\right)^2\right]-\left(4x+5\right)^2\)

\(=\left(x-3-9x-9\right)^2-\left(4x+5\right)^2\)

\(=\left(8x+12\right)^2-\left(4x+5\right)^2\)

\(=\left(4x+7\right)\left(12x+17\right)\)

2 tháng 11 2017

\(P\left(x\right)=\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4\)

\(=\left[\left(4x+1\right)\left(3x+2\right)\right].\left[\left(12x-1\right)\left(x+1\right)\right]-4\)

\(=\left(12x^2+8x+3x+2\right).\left(12x^2+12x-x-1\right)-4\)

\(=\left(12x^2+11x+2\right).\left(12x^2+11x-1\right)-4\)

Đặt \(12x^2+11x=t\), ta có:

\(\left(t+2\right)\left(t-1\right)-4\)

\(=t^2-t+2t-2-4=t^2+t-6\)

\(=t^2-2t+3t-6\)

\(=t\left(t-2\right)+3\left(t-2\right)=\left(t-2\right)\left(t+3\right)\)

Thay \(t=12x^2+11x\), ta được:

\(P\left(x\right)=\left(12x^2+11x-2\right)\left(12x^2+11x+3\right)\)

Đs...

26 tháng 7 2018

h) \(x^4+4=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)

i) \(\left(1+x^2\right)^2-4x\left(1-x^2\right)=\left(1+x^2\right)^2+4x^3-4x=x^4+4x^3+2x^2-4x+1\)

26 tháng 7 2018

x^4+4=x^4+4x^2+4-4x^2=(x^2+2)^2-(2x)^2=(x^2+2-2x)(x^2+2+2x)

\(\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\)

Đặt \(x^2+3x+1=a,\)ta được:

\(a\left(a+1\right)-6\)

\(=a^2+a-6=\left(a^2+3a\right)-\left(2a+6\right)\)

\(=a\left(a+3\right)-2\left(a+3\right)=\left(a+3\right)\left(a-2\right)\)

Thay \(a=x^2+3x+1,\)ta được:

\(\left(x^2+3x+1+3\right)\left(x^2+3x+1-2\right)\)\(=\left(x^2+3x+4\right)\left(x^2+3x-1\right)\)

5 tháng 9 2016

a ) \(x^2+5x+6\)

\(=x^2+5x+\frac{25}{4}-\frac{1}{4}\)

\(=\left(x+\frac{5}{2}\right)^2-\frac{1}{4}\)

b ) \(x^2\left(1-x^2\right)-4+4x^2\)

\(=x^2\left(1-x^2\right)-4\left(1-x^2\right)\)

\(=\left(x^2-4\right)\left(1-x^2\right)\)

\(=\left(x-2\right)\left(x+2\right)\left(1-x\right)\left(1+x\right)\)

5 tháng 9 2016

a) \(x^2+5x+6\\ =x^2+5x+\frac{25}{4}-\frac{1}{4}\\ =\left(x+\frac{5}{2}\right)^2-\frac{1}{4}\\ \)

b) \(x^2\left(1-x^2\right)-4+4x^2\\ =x^2\left(1-x^2\right)-4\left(1-x^2\right)\\ =\left(x^2-4\right)\left(1-x^2\right)\\ =\left(x-2\right)\left(x+2\right)\left(1-x\right)\left(1+x\right)\)