Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(x^2\)- xy - 8x + 8y
= \(\left(x^2-8x\right)\)- (xy - 8y)
= x( x - 8 ) - y( x - 8)
= (x - y)(x - 8)
\(x^2y-y+xy^2-x\)
=> \(x\left(xy-1\right)+y\left(-1+xy\right)\)
=> \(\left(-1+xy\right)\left(x+y\right)\)
Bài 4:
a: \(=7xy\left(2-3-4\right)=-35xy\)
b: \(=\left(x-5\right)\left(x+y\right)\)
c: \(=10x\left(x-y\right)+8\left(x-y\right)=2\left(x-y\right)\left(5x+4\right)\)
d: \(=\left(x+y\right)^3-\left(x+y\right)\)
=(x+y)(x+y+1)(x+y-1)
e: =x^2+8x-x-8
=(x+8)(x-1)
f: \(=2x^2-4x+x-2=\left(x-2\right)\left(2x+1\right)\)
g: =-5x^2+15x+x-3
=(x-3)(-5x+1)
h: =x^2-3xy+xy-3y^2
=x(x-3y)+y(x-3y)
=(x-3y)*(x+y)
Bài 4:
a: \(=7xy\left(2-3-4\right)=-35xy\)
b: \(=\left(x-5\right)\left(x+y\right)\)
c: \(=10x\left(x-y\right)+8\left(x-y\right)=2\left(x-y\right)\left(5x+4\right)\)
d: \(=\left(x+y\right)^3-\left(x+y\right)\)
=(x+y)(x+y+1)(x+y-1)
e: =x^2+8x-x-8
=(x+8)(x-1)
f: \(=2x^2-4x+x-2=\left(x-2\right)\left(2x+1\right)\)
g: =-5x^2+15x+x-3
=(x-3)(-5x+1)
h: =x^2-3xy+xy-3y^2
=x(x-3y)+y(x-3y)
=(x-3y)*(x+y)
\(9-4x^2-4xy-y^2\)
⇔ \(3^2-\left[\left(2x\right)^2+2.2x.y+y^2\right]\)
⇔\(3^2-\left(2x+y\right)^2\)
⇔\(\left(3-2x+y\right)\left(3+2x+y\right)\)
\(9-4x^2-4xy-y^2\)
=> \(9-\left(2x+y\right)\left(2x+y\right)\)
=> \(-\left(2x+y+3\right)\left(2x+y+3\right)\)
a, \(x^8+x^7+1\)
= \(x^7\left(x+1\right)+1\)
= \(x^7\left(x+1\right)+1+x-x\)
= \(x^7\left(x+1\right)+\left(x+1\right)-x\)
= \(\left(x^7+1\right)\left(x+1\right)-x\)
a) \(x^8+x^7+1\)
\(=x^8+x^7+x^6-x^6-x^5-x^4+x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\) \(=x^6\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
b) \(x^4+64\)
\(=\left(x^2+8\right)^2-16x^2\)
\(=\left(x^2+8+4x\right)\left(x^2+8-4x\right)\)
2x2 + 10x + 8 = 2x2 + 2x + 8x + 8 = (2x2 + 2x) + (8x + 8)
= 2x(x + 1) + 8(x + 1) = (x + 1)(2x + 8)
\(x^2\left(x^2+5\right)-4x^2-20=0\)
⇔ \(x^4+5x^2-4x^2-20=0\)
⇔\(x^4+x^2-20=0\)
thay x\(^2\) bằng t ( t ≥ 0 ) ta có:
pt⇔ \(t^2+t-20=0\)
⇔ \(t^2+5t-4t-20=0\)
⇔ \(\left(t-4\right)\left(t+5\right)\)
⇔\(\left[{}\begin{matrix}t-4=0\\t+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=4\left(tm\right)\\t=-5\left(ktm\right)\end{matrix}\right.\)
* \(t=4\) ⇔ \(x^2=4\) ⇔ x = \(\pm2\)
\( {x^2}\left( {{x^2} + 5} \right) - 4{x^2} - 20 = 0\\ \Leftrightarrow {x^4} + 5{x^2} - 4{x^2} - 20 = 0\\ \Leftrightarrow {x^4} + {x^2} - 20 = 0 \)
Đặt \(x^2=t(t\ge0)\)
PT trở thành: \(t^2+t-20=0\)
\(\Leftrightarrow t=4\)(thỏa điều kiện); \(t=-5\)(không thỏa điều kiện)
Với \(t=4 \Rightarrow x^2=4 \Rightarrow x = \pm2\)
Vậy \(S=\left\{2;-2\right\}\)