K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2023

Câu 1: B

Câu 2: B

16 tháng 7 2019

Đề kiểm tra 15 phút Hình học 11 Chương 3 có đáp án (Đề 1)

- Gọi O là tâm của hình bình hành ABCD. Ta có:

Đề kiểm tra 15 phút Hình học 11 Chương 3 có đáp án (Đề 1)

- Từ (1) và (2) suy ra:

Đề kiểm tra 15 phút Hình học 11 Chương 3 có đáp án (Đề 1)

21 tháng 8 2023

THAM KHẢO:

Bài tập 1 trang 56 Toán 11 tập 2 Chân trời

CD//AB nên góc giữa SB và CD là góc giữa AB và SB, \(\widehat{ABS}\)

CB//AD nên góc giữa SD và CB là góc giữa SD và AD, \(\widehat{ADS}\)

Ta có: tan\(\widehat{ABS}\)=tan\(\widehat{ADS}\)=\(\dfrac{a\sqrt{3}}{a}=\sqrt{3}\)

Suy ra \(\widehat{ABS}\)=\(\widehat{ADS}\)=\(\dfrac{\pi}{3}\)

26 tháng 3 2018

Đáp án D

Tồn tại 5 mặt phẳng thỏa mãn đề bài là:

-        Mp đi qua trung điểm AD,BC,SC,SD

-        Mp đi qua trung điểm CD,AB,SC,SB

-        Mp đi qua trung điểm AD,BC,SB,SA

-        Mp đi qua trung điểm CD,AB,SA,SD

-        Mp đi qua trung điểm SA,SB,SC,SD

Chọn C

28 tháng 12 2021

ơ đề có sai ko bạn

28 tháng 12 2021

mình làm cũng hoang mang lắm bạn=), hay để hỏi cô xem sao
 

21 tháng 12 2023

a: Chọn mp(ABCD) có chứa CD

Xét ΔSBD có

E,I lần lượt là trung điểm của SB,SD

=>EI là đường trung bình của ΔSBD

=>EI//BD

Xét (ABCD) và (AIE) có

\(A\in\left(ABCD\right)\cap\left(AIE\right)\)

EI//BD

Do đó: (ABCD) giao (AIE)=xy, xy đi qua A và xy//BD//EI

Gọi K là giao điểm của xy với CD

=>K là giao điểm của CD với mp(AIE)

21 tháng 12 2023

a: Chọn mp(ABCD) có chứa CD

Xét ΔSBD có

E,I lần lượt là trung điểm của SB,SD

=>EI là đường trung bình của ΔSBD

=>EI//BD

Xét (ABCD) và (AIE) có

 

EI//BD

Do đó: (ABCD) giao (AIE)=xy, xy đi qua A và xy//BD//EI

Gọi K là giao điểm của xy với CD

=>K là giao điểm của CD với mp(AIE)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Ta có: \(I\) là trung điểm của \(SA\)

\(J\) là trung điểm của \(SB\)

\( \Rightarrow IJ\) là đường trung bình của tam giác \(SAB\)

\( \Rightarrow IJ\parallel AB\)

\(E\) là trung điểm của \(SC\)

\(F\) là trung điểm của \(SD\)

\( \Rightarrow EF\) là đường trung bình của tam giác \(SC{\rm{D}}\)

\( \Rightarrow EF\parallel C{\rm{D}}\)

Mà \(AB\parallel C{\rm{D}}\).

Vậy \(IJ\parallel EF\parallel AB\parallel C{\rm{D}}\).

Vậy \(AD\) không song song với \(IJ\)

Chọn C.

NV
5 tháng 2 2021

Kẻ \(BK\perp AC\Rightarrow BK\perp\left(SAC\right)\)

\(\Rightarrow BK=d\left(B;\left(SAC\right)\right)\)

\(\dfrac{1}{BK^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Rightarrow BK=\dfrac{AB.AC}{\sqrt{AB^2+AC^2}}=\dfrac{a\sqrt{3}}{2}\)

Kẻ \(CP\perp BH\Rightarrow CP\perp\left(SBH\right)\)

\(\Rightarrow CP=d\left(C;\left(SBH\right)\right)\)

\(\widehat{CBP}=\widehat{ACB}=30^0\Rightarrow CH=BC.sin30^0=\dfrac{a\sqrt{3}}{2}\)

\(BH=\dfrac{AC}{2}=\dfrac{1}{2}\sqrt{AB^2+AC^2}=a\)\(\Rightarrow SH=\sqrt{SB^2-BH^2}=a\)

Kẻ \(HE\perp BC\) , kẻ \(HF\perp SE\Rightarrow HF=d\left(H;\left(SBC\right)\right)\)

\(HE=CH.sin30^0=\dfrac{a}{2}\) 

\(\dfrac{1}{HF^2}=\dfrac{1}{SH^2}+\dfrac{1}{HE^2}\Rightarrow HF=\dfrac{SH.HE}{\sqrt{SH^2+HE^2}}=\dfrac{a\sqrt{5}}{5}\)