K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2017

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

2 tháng 12 2017

Ta biết rằng một số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9, do đó hiệu của chúng chia hết cho 9.

Như vậy :               

và                             

Suy ra :  

...

30 tháng 1 2018

Ta biết rằng một số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9, do đó hiệu của chúng chia hết cho 9.

Như vậy :        \(2k-a⋮9\)       

và           \(:a-k⋮9\)                  

Suy ra :  ...

30 tháng 1 2018

Ta biết rằng một số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9, do đó hiệu của chúng chia hết cho 9.

Như vậy :      \(2a-k⋮3\)         

và     \(a-k⋮3\)                        

Suy ra :  \(a⋮3\)

...

16 tháng 5 2015

Giải:

Ta biết rằng một số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9,do đó hiệu của chúng chia hết cho 9.

Như vậy:2a-k chia hết cho 9

và a-k chia hết cho 9

Suy ra : (2a-k)-(a-k) chia hết cho 9

Do đó : a chia hết cho 9

 

20^n+16^n-3^n-1=(20^n-1^n)+(16^n-3^n)=(20-1)k+(256^x-9^x)                                      (n=2x)

=19k+247x=19(k+13x) chia hết cho 19

20^n+16^n-3^n-1=(20^n-3^n)+(16^n-1)=(20-3)f+(256^x-1^x)=17f+(256-1)x

=17f+255x=17(x+15x) chia hết cho 17

=>20^n+16^n-3^n-1 chia hết cho 17;19

=> 20^n+16^n-3^n-1 chia hết cho 323

=>ĐPCM neeys 

AH
Akai Haruma
Giáo viên
13 tháng 7 2024

Lời giải:
Một số tự nhiên có cùng số dư khi chia cho 9 với tổng các chữ số của nó. Tức là:

$a-S(a)\vdots 9$

$2a-S(2a)\vdots 9$

$\Rightarrow a-k\vdots 9; 2a-k\vdots 9$

$\Rightarrow (2a-k)-(a-k)\vdots 9$

$\Rightarrow a\vdots 9$

4 tháng 9 2015

a + a2 = k

a1 + a2 = k

a( 1 + 2 ) = k

a3 = k

=> bó tay 

4 tháng 9 2015

Ta biết rằng 1 số & tổng các chữ số của nó có cùng số dư trong phép chia cho 3 , do đó hiệu của chúng chia hết cho 3

    Như vậy: 2a-k chia hết cho 3, và a-k chia hết cho 3

   => ( 2a-k )-(a-k) chia hết cho 3

   => a chia hết cho 3

**** mình nha bạn !!!!!!

23 tháng 9 2018

Vì tổng các chữ số có cùng dư khi chia cho 9 và a; 2a có tổng các chữ số giống nhau nên a; 2a có cùng dư chia cho 9.

Đặt a = 9q + r

2a =9k + r

(q; k; r thuộc N*; k > q)

=> 2a - a = a

=> (9k + r) - (9q + r)

=> 9k + r - 9q - r

=> 9(k - q) chia hết cho 9.

=> a chia hết cho 9.