Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\widehat{MBA}=90^0-55^0=35^0\)
\(\widehat{MAB}=90^0-67^0=23^0\)
Do đó: \(\widehat{AMB}=122^0\)
Do AD là tia phân giác A => \(\widehat{A_1}=\widehat{A}_2\)
Xét tam giác ADB có:\(\widehat{A_1}+\widehat{ADB}+\widehat{B}=180\)
Hay A1 + 80 + B = 180 => A1 + B = 100 (1)
Do góc ADB + ADC = 180 (Kề bù)
=> 80+ ADC = 180
ADC = 100
Xét tam giác ADC có: \(\widehat{A_2}+\widehat{ADC}+\widehat{C}=180\)
A2 + 100 + C = 180
A2 + C = 80 (2)
Từ 1, 2, có: A2 + C + 20 = A1 + B = 100
=> A1 + C + 20 = A1 + 3/2C
3/2C - C = 20
=> 1/2C= 20
C= 40
Mà B = 3/2 C => B = 3/2 . 40 = 60
Xét tam giác ABC có: A+B+C = 180
hay A + 60+40=180
A= 80
Vậy ...........
2/
Xét tam giác ABC có : A + B + C = 180 => B+C = 180 - A => B+C = 180 - 80 => B+C = 100
Do BI;CI lần lượt là phân giác của B; C => B1 = B2 = 1/2 B ; C1 = C2 = 1/2 C
Xét tam giác IBC có:
B2+BIC+C2 = 180
(B2+C2) + BIC = 180
1/2 B + 1/2 C + BIC = 180
1/2 ( B+C) +BIC = 180
hay 1/2 . 100 + BIC = 180
BIC = 180 - 50
BIC = 130
Vậy ...
a ) Xét \(\Delta\)ABM và \(\Delta\)ACM có :
- AB = AC ( \(\Delta\)ABC cân tại A )
- AM : cạnh chung
- BÂM = CÂM ( vì AM là phân giác của BÂC )
\(\Rightarrow\)\(\Delta\)ABM = \(\Delta\)ACM ( c - g - c )
b ) Xét \(\Delta\)AHM và \(\Delta\)AKM có :
- AM : cạnh chung
- Góc AHM = Góc AKM ( = 90° )
- HÂM = KÂM ( vì AM là phân giác của BÂC )
\(\Rightarrow\)\(\Delta\)AHM = \(\Delta\)AKM ( cạnh huyền - góc nhọn )
\(\Rightarrow\)AH = AK ( 2 cạnh tương ứng )
c ) Gọi O là giao điểm của AM và HK
Xét \(\Delta\)AOH và \(\Delta\)AOK có :
- AO : cạnh chung
- AH = AK ( cmt )
- HÂO = KÂO ( vì AM là phân giác của BÂC )
\(\Rightarrow\)\(\Delta\)AOH = \(\Delta\)AOK ( c - g - c )
\(\Rightarrow\)AÔH = AÔK ( 2 góc tương ứng )
Mà AÔH + AÔK = 180° ( kề bù )
\(\Rightarrow\)AÔH = ÔK = 180° / 2 = 90°
Hay AM \(\perp\)HK
Xin chào đồng loại. À k, fải là xin chào "c - hó" ms đúng tên của pạn chứ nhỉ, bạn "depgiaicogisaidau" thân yêu!
P/s: mai đổi thành "lachocogisaidau" nha!
A B C M A1 B1
b,
Trong \(\Delta\) AMB có:
\(\widehat{BAM}+\widehat{AMB}+\widehat{MBA}=180^0\)
\(\Rightarrow\widehat{BAM}+\widehat{ABM}=44^0\)
Hay \(\dfrac{1}{2}\left(\widehat{BAC}+\widehat{ABC}\right)=44^0\)
=> \(\widehat{BAC}+\widehat{ABC}=88^0\)
Trong \(\Delta ABC\) có:
\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)
\(\Rightarrow\widehat{ACB}=92^0\)
Ta lại có: hai đường phân giác \(\text{AA}_1\) và \(BB_1\) cắt nhau tại M => M là giao của 3 đường phân giác
=> CM là phân của của \(\widehat{C}\)
=> \(\widehat{BCM}=\widehat{MCA}=\dfrac{1}{2}\widehat{C}=\dfrac{1}{2}.92^0=46^0\)
b,
Tương tự câu a, ta tìm được:
\(\widehat{ACM}=\widehat{BCM}=21^0\)