Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tất cả các bài này nếu lười suy nghĩ thì bình lên bậc 4 rồi dùng máy tính bỏ túi tìm nghiệm và phân tích nhân tử!
1/\(x^4+x^2+1=\left(x^2+1\right)^2-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)\)
\(VT=\sqrt{3}\left[2\left(x^2-x+1\right)-\left(x^2+x+1\right)\right]\)
Có dạng đẳng cấp rồi.
2/ \(x^4+1=\left(x^2+1\right)^2-2x^2=\left(x^2-\sqrt{2}x+1\right)\left(x^2+\sqrt{2}x+1\right)\)
\(VT=\left(x^2+\sqrt{2}x+1\right)+3\left(x^2-\sqrt{2}x+1\right)\)-> dạng đẳng cấp
3/ tương tự: \(x^3+3x^2+4x+2=\left(x^2+2x+2\right)\left(x+1\right)\)
\(VT=3\left(x^2+2x+2\right)-8\left(x+1\right)????\)
4/ Chuyển vế căn ở giữa, bình phương thu gọn rồi làm giống như 3 bài ở trên.
5/ Có lẽ tương tự
Lời giải:
a) \(3x^2+4x+10=2\sqrt{14x^2-7}=2\sqrt{7(2x^2-1)}\)
Áp dụng BĐT AM-GM:
\(3x^2+4x+10\leq 7+(2x^2-1)\)
\(\Leftrightarrow x^2+4x+4\leq 0\)
\(\Leftrightarrow (x+2)^2\leq 0\)
Mà \((x+2)^2\geq 0\forall x\in\mathbb{R}\Rightarrow (x+2)^2=0\)
\(\Leftrightarrow x=-2\) (thử lại thấy thỏa mãn)
b) Có:
\(\sqrt{4x^2+5x+1}+3=2\sqrt{x^2-x+1}+9x\)
\(\Leftrightarrow \sqrt{4x^2+5x+1}-\sqrt{4x^2-4x+4}=9x-3\)
\(\Leftrightarrow \frac{9x-3}{\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4}}-(9x-3)=0\)
\(\Leftrightarrow (9x-3)\left(\frac{1}{\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4}}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}9x-3=0\Leftrightarrow x=\dfrac{1}{3}\\\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4}=1\left(2\right)\end{matrix}\right.\)
Xét (2):
Ta thấy:
\(\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4}\geq \sqrt{4x^2-4x+4}=\sqrt{(2x-1)^2+3}\geq \sqrt{3}>1\)
Do đó \((2)\) vô lý
Vậy PT có nghiệm \(x=\frac{1}{3}\)