Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1:
b) đề như vầy hả :\(\left\{{}\begin{matrix}\left(x^2-1\right)y+\left(y^2-1\right)x=2\left(xy-1\right)\left(1\right)\\4x^2+y^2+2x-y-6=0\left(2\right)\end{matrix}\right.\)
\(Pt\left(1\right)\Leftrightarrow x^2y+xy^2-x-y-2xy+2=0\)
\(\Leftrightarrow xy\left(x+y\right)-\left(x+y\right)-2\left(xy-1\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(xy-1\right)-2\left(xy-1\right)=0\)
\(\Leftrightarrow\left(xy-1\right)\left(x+y-2\right)=0\Leftrightarrow\left[{}\begin{matrix}xy=1\\x+y=2\end{matrix}\right.\)
*xét \(xy=1\Leftrightarrow x=\dfrac{1}{y}\)thế vào Pt (2):\(\dfrac{4}{y^2}+y^2+\dfrac{2}{y}-y-6=0\)
\(\Leftrightarrow\dfrac{4+2y}{y^2}+\left(y+2\right)\left(y-3\right)=0\)\(\Leftrightarrow\left(y+2\right)\left(\dfrac{2}{y^2}+y-3\right)=0\)
\(\Leftrightarrow\left(y+2\right)\left(y^3-3y^2+2\right)=0\)\(\Leftrightarrow\left(y+2\right)\left(y-1\right)\left(y^2-2y-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=-2\\y=1\\y=1-\sqrt{3}\\y=1+\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=1\\x=-\dfrac{1+\sqrt{3}}{2}\\x=\dfrac{-1+\sqrt{3}}{2}\end{matrix}\right.\)
* xét x+y=2(tương tự thay x=2-y vào Pt (2))
câu 2:
ta đưa về PT ẩn x:\(x^2-x\left(y+1\right)+y^2-y-2=0\)
Pt phải có nghiệm ,xét \(\Delta=\left(y+1\right)^2-4\left(y^2-y-2\right)\ge0\)
\(\Leftrightarrow y^2-2y-3\le0\Leftrightarrow\left(y+1\right)\left(y-3\right)\le0\)
\(\Leftrightarrow-1\le y\le3\).
vì x,y thuộc Z ,lần luợt thay các giá trị của y vừa tìm được vào PT ban đầu ta được các cặp (x,y) t/m là (0;-1);(-1;0);(2;0);(0;2);(3;2);(2;3)
bài 3:
DKXĐ:\(\left\{{}\begin{matrix}2x^2-x\ge0\\2x-x^2\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge\dfrac{1}{2}\\x\le0\end{matrix}\right.\\0\le x\le2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{1}{2}\le x\le2\end{matrix}\right.\)
bình phương , self study
a)\(\Leftrightarrow\left\{{}\begin{matrix}25x+15y=40xy\left(1\right)\\24x+16y=40xy\left(2\right)\end{matrix}\right.\)
Lấy (1) trừ (2), ta được: x-y=0\(\Leftrightarrow x=y\)
Thay vào 5x+3y=8xy ta được: \(5x+3x=8x^2\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\).\(\Rightarrow\left[{}\begin{matrix}x=y=0\\x=y=1\end{matrix}\right.\)
Vậy hpt có nghiệm (0;0);(1;1).
b)\(\Leftrightarrow\left\{{}\begin{matrix}-5x+5y=5xy\left(1\right)\\4x+3y=5xy\left(2\right)\end{matrix}\right.\)
Lấy (2) trừ (1) ta được: 9x-2y=0 \(\Leftrightarrow y=\dfrac{9x}{2}\)
Thay vào -x+y=xy ta được: \(-x+\dfrac{9x}{2}=x^2\)
\(\Leftrightarrow-2x+9x=2x^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=\dfrac{7}{2}\left(KTM\right)\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}y=0\left(TM\right)\\y=\dfrac{63}{4}\left(KTM\right)\end{matrix}\right.\)
Vậy hpt có nghiệm (0;0).
c) Từ 2x-y=5\(\Rightarrow y=2x-5\)
Thay vào \(\left(x+y+2\right)\left(x+2y-5\right)=0\), ta được:
\(\left(3x-3\right)\left(5x-15\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(TM\right)\\x=5\left(KTM\right)\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}y=1\left(TM\right)\\y=5\left(KTM\right)\end{matrix}\right.\)
Vậy hpt có nghiệm (3;1).
2(xy)2 - 5xy + 2 = 0
Đặt xy=a \(\Rightarrow\) 2a2 - 5a +2 =0
\(\Leftrightarrow\) 2a2-4a-a+2 = 0
\(\Leftrightarrow\) (2a-1)(a-2)=0
\(\Rightarrow\) a=\(\dfrac{1}{2}\) hoặc a=2\(\Leftrightarrow\) xy=\(\dfrac{1}{2}\) hoặc xy=2. (cần thêm điều kiện của x_y để giải phương trình)