Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b/ Ta có: x1 + x2 = 2m + 2
x1x2 = m - 4
M = x1(1 - x2) + x2(1 - x1) = x1 - x1x2 + x2 - x1x2 = (x1 + x2) - 2x1x2 = (2m + 2) - 2.(m - 4) = 10
Vậy không phụ thuộc vào m
a: Khim=0 thì (1) trở thành \(x^2-2=0\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
Khi m=1 thì (1) trở thành \(x^2-2x=0\)
=>x=0 hoặc x=2
b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-2\right)\)
\(=4m^2-8m+8=4\left(m-1\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm
Giả sử pt đã cho có 2 nghiệm
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=2m\end{matrix}\right.\)
\(\Rightarrow M=x_1+x_2-x_1x_2\)
\(\Rightarrow M=2m+2-2m\)
\(\Rightarrow M=2\) ko phụ thuộc m (đpcm)
2:
\(P=\dfrac{x_1+x_2}{x_1x_2}=\dfrac{-2}{-1}=2\)
1: Δ=(-2)^2-4*m
=4-4m
m<1
=>-4m>-4
=>-4m+4>0
=>Phương trình luôn có hai nghiệm phân biệt khi m<1
Phương trình : \(x^2-2mx+2m-3=0\left(1\right)\)
Xét : \(\Delta=m^2-\left(2m-3\right)=m^2-2m+3=m^2-2m+1+2=\left(m-1\right)^2+2>0,\forall m\)
=> Phương trình 1 luôn có 2 ngiệm phân biệt x1, x2
\(A=x_1^2+x_2^2=x_1^2+2x_1x_2+x_2^2-2x_1x_2=\left(x_1+x_2\right)^2-2x_1x_2\)
Áp dụng định lí Vi ét cho phương trình (1) Ta có:
x1+x2=2m; x1.x2=2m-3
Khi đó: \(A=\left(2m\right)^2-2.\left(2m-3\right)=\left(2m\right)^2-2.2m+1+5=\left(2m-1\right)^2+5\ge5\)
'=" xảy ra <=> 2m-1=0 <=> m=1/2
Vậy : min A=5 khi và chỉ khi m=1/2
\(\left(m-1\right)x^2-2mx+m-4=0\)
Theo Vi - ét , ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{2m}{m-1}\\x_1x_2=\dfrac{c}{a}=\dfrac{m-4}{m-1}\end{matrix}\right.\)
Ta có :
\(A=3\left(x_1+x_2\right)+2x_1x_2-8\)
\(=3\left(\dfrac{2m}{m-1}\right)+2\left(\dfrac{m-4}{m-1}\right)-8\)
\(=\dfrac{6m}{m-1}+\dfrac{2m-8}{m-1}-8\)
\(=\dfrac{6m+2m-8}{m-1}-8\)
\(=\dfrac{8m-8}{m-1}-8\)
\(=\dfrac{8\left(m-1\right)}{m-1}-8\)
\(=8-8\)
\(=0\)
Vậy biểu thức A không phụ thuộc giá trị m
uii cảm ơn bạn nhiều nhakk<3.