\(p=\frac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 9 2020

Điều kiện là các số dương

\(VT=\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(x+y+z\right)\left(xy+yz+zx\right)-xyz\)

\(VT\ge\left(x+y+z\right)\left(xy+yz+zx\right)-\frac{1}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\)

\(VT\ge\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\ge\frac{8}{9}\left(x+y+z\right).3\sqrt[3]{x^2y^2z^2}=VP\)

Dấu "=" xảy ra khi \(x=y=z\)

19 tháng 12 2017

x4=y2x2 hay x4=y2z2 vậy bạn

19 tháng 12 2017

x\(^4=y^2z^2\)

13 tháng 2 2020

1) \(\left\{{}\begin{matrix}b+c-a=x\\c+a-b=y\\a+b-c=z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\frac{y+z}{2}\\b=\frac{z+x}{2}\\c=\frac{x+y}{2}\end{matrix}\right.\)

BĐT cần cm trở thành:

\(\frac{y+z}{2x}+\frac{z+x}{2y}+\frac{x+y}{2z}\ge3\)

Theo AM-GM, VT>=6/2=3

Dấu bằng xảy ra khi a=b=c

2)\(x^2\left(y+z\right)\ge2x^2\sqrt{yz}=2x^2\sqrt{\frac{1}{x}}=2x\sqrt{x}\)

=>\(P\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)

Đặt \(\left\{{}\begin{matrix}x\sqrt{x}=a\\y\sqrt{y}=b\\z\sqrt{z}=c\end{matrix}\right.\Rightarrow abc=1\)

=>\(P\ge\frac{2a}{b+2c}+\frac{2b}{c+2a}+\frac{2c}{a+2b}\ge2.1=2\)

(Dùng Cauchy-Schwartz chứng minh được:

\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge1\))

Dấu bằng xảy ra khi a=b=c=1 <=> x=y=z=1

Vậy minP=2<=>x=y=z=1

21 tháng 6 2017

1. Theo BĐT AM - GM, ta có:

\(\Sigma\dfrac{1}{\left(2x+y+z\right)^2}=\Sigma\dfrac{1}{\left\{\left(x+y\right)+\left(x+z\right)\right\}^2}\le\Sigma\dfrac{1}{4\left(x+y\right)\left(x+z\right)}\)

Do đó BĐT ban đầu sẽ đúng nếu ta C/m được

\(\Sigma\dfrac{1}{4\left(x+y\right)\left(x+z\right)}\le\dfrac{3}{16}\Leftrightarrow\dfrac{8}{3}\left(x+y+z\right)\le\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

\(\Leftrightarrow\dfrac{8}{3}\left(x+y+z\right)\left(xy+yz+zx\right)\le\left(x+y\right)\left(y+z\right)\left(z+x\right)\left(xy+yz+zx\right)\)

Nhưng điều này đúng vì \(xy+yz+zx\ge\sqrt[3]{x^2y^2z^2}=3\) và theo bổ đề bên trên. Từ đó ta có điều phải chứng minh. Dấu bằng xảy ra \(\Leftrightarrow a=b=c=1\)

( Còn bài 2 để suy nghĩ rồi tối đăng cho nha )

22 tháng 6 2017

Hơi lâu đúng không mk giải bài 2 cho

2 tháng 5 2019

Các bạn ơi giúp mk với

11 tháng 4 2020

em không hiểu dòng đầu lắm tại sao lại ra cos2(x+y+z) được thế ạ

NV
11 tháng 4 2020

\(cosa=cos\left(2\pi-a\right)\)

\(t=2\pi-\left(x+y+z\right)\) nên...

tư mã chiêu