K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2016

a) OA vuông góc BC do tam giác ABC cân ( t ính chất tiếp tuyến cắt nhau ) . Có OA phân giác nên là đồng thời là đường cao

b) Tứ giác AOBE nột tiếp vì góc ABO= 90 ( tiếp tuyến ), góc AEO=90 ( đường kính đi qua trung điểm nên vuông góc vs dây ấy) => đpcm

29 tháng 3 2016

c) Có OA.AF= AB2 ( hệ thức lượng )  có tam giác ABM đồng dạng tam giác ANM ( góc A chung, góc ABM= góc BNM ( góc nt và góc tạo bởi tiếp tuyến dây c ung)

==> AM.AN=AB^2 . Vậy có đpcm

d) Có AM/AN= AM/AF

=> Tam giác MAF đồng dạng tam giác OAN ( cạnh góc cạnh) ==> góc M = góc O. Mà góc AMF+ NMF=180 nên góc AON +NMF=180

Vậy có đpcm 

8 tháng 5 2020

ajnomoto

29 tháng 12 2015

qwertyuiop[ư\';lkjhgfdsazxcvbnm,./\';lkjhgfdsaqwwertyuiop[ư

a: góc ABO+góc ACO=90+90=180 độ

=>ABOC nội tiếp đường tròn đường kính OA

Tâm là trung điểm của OA

Bán kính là OA/2

b: Xét (O) có

AB,AC là tiếp tuyến

=>AB=AC
mà OB=OC

nên OA là trung trực của BC

=>AO vuông góc BC

c: Xét ΔAMB và ΔABN có

góc AMB=góc ABN

góc MAB chung

=>ΔAMB đồng dạng với ΔABN

=>AM/AB=AB/AN

=>AB^2=AM*AN=AH*AO

1/ Từ một điểm M  ở ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB( A,B là tiếp điểm) a/ CMR tứ giác MAOB nội tiếp định tâm I và bán kính của đường tròn nàyb/  Cho MO = 2R CMR tam giác MAB đều 2/ Cho đường tròn (O) đường kính AB gọi I là trung điểm của OA. Qua I vẽ dây CD vuông góc AB. K la trung điểm của BC. CMR tứ giác CIOK nội tiếp đường tròn3/ Cho nửa đường tròn (O) đường kính AB....
Đọc tiếp

1/ Từ một điểm M  ở ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB( A,B là tiếp điểm) 

a/ CMR tứ giác MAOB nội tiếp định tâm I và bán kính của đường tròn này

b/  Cho MO = 2R CMR tam giác MAB đều 

2/ Cho đường tròn (O) đường kính AB gọi I là trung điểm của OA. Qua I vẽ dây CD vuông góc AB. K la trung điểm của BC. CMR tứ giác CIOK nội tiếp đường tròn

3/ Cho nửa đường tròn (O) đường kính AB. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt Ax và By lần lượt tại E và F. CMR tứ giác AEMO là tứ giác nội tiếp 

4/ Cho tam giác ABC cân tại A có góc A nhọn, đường vuông góc với AB tại A cắt đường thẳng B, C tại E. Kẻ EN vuông với EC gọi M là trung điểm BC. CMR tứ giác AMNE là tứ giác nội tiếp đường tròn

Giải giúp mk vs mk đang cần gấp

1

Bài 2:

ΔOBC cân tại O

mà OK là trung tuyến

nên OK vuông góc BC

Xét tứ giác CIOK có

góc CIO+góc CKO=180 độ

=>CIOK là tứ giác nội tiếp

Bài 3:

Xét tứ giác EAOM có

góc EAO+góc EMO=180 độ

=>EAOM làtứ giác nội tiếp

23 tháng 4 2023

 gọi E là giao điểm OA với đường tròn 

OE vuông góc BC => E là điểm chính giữa cung BC =>sđEC=sđEB

xét đường tròn (O) có MKC là góc tạo bởi tiếp tuyến và dây 

MKC=(sdCM-sdMB)/2=(sdCE+sdEM-sdMB)/2

=(sdEB+sdEM-sdMB)/2=(sdEM+sdEM)/2

=2.sdEM/2=sd EM

mà EOM=sdEM (góc ở tâm chắn cung EM )

=>MKC=EOM=>MKH=HOM

Mà 2 góc này cùng chắn HM=>tứ giác MHOK nội tiếp

=>OMK=OHK 

tiếp tuyến AB và AC cắt nhau tại A =>OA là phân giác COB

mà tg COB cân (OB=OC=R)=>OA đồng thời là đường cao

=>OA vuông góc với BC=>OHK=90=>OMK=90

=>tgOMK vuông=>đpcm

1: góc ABO+góc ACO=180 độ

=>ABOC nội tiếp

2: Xét ΔABM và ΔANB có

góc ABM=góc ANB

góc BAM chung

=>ΔABM đồng dạng với ΔANB

=>AB/AN=AM/AB

=>AB^2=AN*AM

28 tháng 2 2019

E C A D B

Ta có: tỨ giác OCEA nội tiếp

=> \(\widehat{OCA}=\widehat{OEA}\)(1)

Vì OC=OB 

=> Tam giác OBC cân 

=> \(\widehat{OCA}=\widehat{OCB}=\widehat{OBC}\)(2)

Tứ giác ODAB nội tiếp

=> \(\widehat{ODA}=\widehat{OBC}\)( cùng bù với góc OBA) (3)

Từ (1), (2), (3)

=> \(\widehat{ODA}=\widehat{OEA}\)

=> Tam giác ODE cân có OA là đươngcao

=> OA là đường trung tuyến

=> A là trung điểm của DE