K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2021

h) \(y\left(y-x\right)^3-x\left(x-y\right)^2+xy\left(x-y\right)=y\left(y-x\right)^3-x\left(y-x\right)^2-xy\left(y-x\right)=\left(y-x\right)\left[y\left(y-x\right)^2-x-xy\right]=\left(y-x\right)\left[y\left(y^2-2xy+x^2\right)-x-xy\right]=\left(y-x\right)\left(y^3-2xy^2+x^2y-x-xy\right)\)

i) \(10x^2\left(a-2b\right)^2-\left(x^2+2\right)\left(2b-a\right)^2=10x^2\left(a-2b\right)^2-\left(x^2+2\right)\left(a-2b\right)^2=\left(a-2b\right)^2\left(10x^2-x^2-2\right)=\left(a-2b\right)^2\left(9x^2-2\right)\)

10 tháng 10 2021

g: \(3\left(x-y\right)-5x\left(y-x\right)=\left(x-y\right)\left(5x+3\right)\)

f: \(4x^2\left(x+1\right)+2x^2\left(x+1\right)\)

\(=6x^2\left(x+1\right)\)

11 tháng 10 2021

f: \(4x^2\left(x+1\right)+2x^2\left(x+1\right)=6x^2\left(x+1\right)\)

g: \(3\left(x-y\right)-5x\left(y-x\right)=\left(x-y\right)\left(5x+3\right)\)

10 tháng 10 2021

câu f có ( x+1) là nhân tử chung

câu g đổi dấu - thành + thì (y-x) sẽ thành (x-y)

10 tháng 10 2021

bạn giải ra đc ko?

3 tháng 9 2015

\(=2ab\left(2b+a\right)\left(y+x\right)\)

 

a: =(x+y)^2*(x-y)+x(y-x)

=(x-y)[(x+y)^2-x]

28 tháng 7 2023

dấu * là j vậy bạn

 

b: \(\left(x^2+4\right)^2-16x^2\)

\(=\left(x^2-4x+4\right)\left(x^2+4x+4\right)\)

\(=\left(x-2\right)^2\cdot\left(x+2\right)^2\)

c: \(x^5-x^4+x^3-x^2\)

\(=x^4\left(x-1\right)+x^2\left(x-1\right)\)

\(=x^2\left(x-1\right)\left(x^2+1\right)\)

AH
Akai Haruma
Giáo viên
18 tháng 8 2021

Lời giải:

a. Bạn xem lại đề

b. \((x^2+4)^2-16x^2=(x^2+4)^2-(4x)^2=(x^2+4-4x)(x^2+4+4x)\)

\(=(x-2)^2(x+2)^2\)

c.

\(x^5-x^4+x^3-x^2=x^4(x-1)+x^2(x-1)=(x^4+x^2)(x-1)\)

\(=x^2(x^2+1)(x-1)\)

22 tháng 11 2021

\(a,=x^2-9-x^2+6x-9=6x-18\\ b,=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x+y-5\right)\left(x-y\right)\)

4 tháng 10 2016

..........................

4 tháng 10 2016

a)\(a^4+a^3+a^3b+a^2b=\left(a^4+a^3b\right)+\left(a^3+a^2b\right)\)

\(=a^3\left(a+b\right)+a^2\left(a+b\right)\)

\(=\left(a^3+a^2\right)\left(a+b\right)\)

\(=a^2\left(a+1\right)\left(a+b\right)\)

b)\(\left(x-y+4\right)^2-\left(2x+3y-1\right)^2\)

\(=\left[\left(x-y+4\right)-\left(2x+3y-1\right)\right]\left[\left(x-y+4\right)+\left(2x+3y-1\right)\right]\)

\(=\left(x-y+4-2x-3y+1\right)\left(x-y+4+2x+3y-1\right)\)

\(=\left(-x-4y+5\right)\left(4x+2y+3\right)\)

c)\(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\)

\(=x^2\left(y-z\right)+y^2\left(z-y+y-x\right)+z^2\left(x-y\right)\)

\(=x^2\left(y-z\right)-y^2\left(y-z\right)-y^2\left(x-y\right)+z^2\left(x-y\right)\)

\(=\left(y-z\right)\left(x^2-y^2\right)-\left(x-y\right)\left(y^2-z^2\right)\)

\(=\left(y-z\right)\left(x-y\right)\left(x+y\right)-\left(x-y\right)\left(y-z\right)\left(y+z\right)\)

\(=\left(y-z\right)\left(x-y\right)\left(x+y-y-z\right)\)

\(=\left(y-z\right)\left(x-y\right)\left(x-z\right)\)