K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2017

a) Thu gọn và sắp xếp:

M(x) = 2x4 – x4 + 5x3 – x3 – 4x3 + 3x2 – x2 + 1

= x4 + 2x2 +1

b)M(1) = 14 + 2.12 + 1 = 4

M(–1) = (–1)4 + 2(–1)2 + 1 = 4

Ta có M(x)=\(x^4+2x^2+1\)

\(x^4\)\(2x^2\)luôn lớn hơn hoặc bằng 0 với mọi x

Nên \(x^4+2x^2+1>0\)

Tức là M(x)\(\ne0\) với mọi x

Vậy đa thức trên không có nghiệm.

19 tháng 4 2017

a) Sắp xếp các hạng tử của đa thức M(x) theo lũy thừa giảm của biến

M(x)=2x4x4+5x3x34x3+3x2x2+1M(x)=2x4−x4+5x3−x3−4x3+3x2−x2+1

=x4+2x2+1=x4+2x2+1

b) M(1)=14+2.12+1=4M(1)=14+2.12+1=4

M(1)=(1)4+2.(1)2+1=4M(−1)=(−1)4+2.(−1)2+1=4

c) Ta có: M(x)=x4+2x2+1M(x)=x4+2x2+1

Vì giá trị của x4 và 2x2 luôn lớn hơn hay bằng 0 với mọi x nên x4 +2x2 +1 > 0 với mọi x tức là M(x) ≠ 0 với mọi x. Vậy M(x) không có nghiệm.

24 tháng 4 2017

a)P(x)=\(x^5-3x^2+7x^4-9x^3+x^2-\dfrac{1}{4}x\)

=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)

Q(x)=\(5x^4-x^5+x^2-2x^3+3x^2-\dfrac{1}{4}\)

=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)

b) P(x)=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)

+ Q(x)=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)

__________________________________

P(x)+Q(x)= \(12x^4-11x^3+2x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)

P(x)=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)

- Q(x)=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)

_________________________________________

P(x)-Q(x)=\(2x^5+2x^4-7x^3-6x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)

c)Thay x=0 vào đa thức P(x), ta có:

P(x)=\(0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\dfrac{1}{4}\cdot0\)

=0+0-0-0-0

=0

Vậy x=0 là nghiệm của đa thức P(x).

Thay x=0 vào đa thức Q(x), ta có:

Q(x)=\(-0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\dfrac{1}{4}\)

=0+0-0+0-\(\dfrac{1}{4}\)

=0-\(\dfrac{1}{4}\)

=\(\dfrac{-1}{4}\)

Vậy x=0 không phải là nghiệm của đa thức Q(x).

19 tháng 4 2017

a) Sắp xếp theo lũy thừa giảm dần

P(x)=x53x2+7x49x3+x214xP(x)=x5−3x2+7x4−9x3+x2−14x

=x5+7x49x32x214x=x5+7x4−9x3−2x2−14x

Q(x)=5x4x5+x22x3+3x214Q(x)=5x4−x5+x2−2x3+3x2−14

=x5+5x42x3+4x214=−x5+5x4−2x3+4x2−14

b) P(x) + Q(x) = (x5+7x49x32x21

9 tháng 5 2019

a) \(f\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5\)

\(g\left(x\right)=x^4+3x^3-\frac{2}{3}x^2-2x-10\)

b) \(f\left(x\right)+g\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5+x^4+3x^3-\frac{2}{3}x^2-2x-10\)

                                \(=6x^3-x^2-5\)

c) +) Thay x=1 vào đa thức f(x) + g(x) ta được :

       \(6.1^3-1^2-5=0\)

Vậy x=1 là nghiệm của đa thức f(x) + g(x)

+) Thay x=-1 vào đa thức f(x) + g(x) ta được :

    \(6.\left(-1\right)^3-\left(-1\right)^2-5=-10\)

Vậy x=-1 ko là nghiệm của đa thức f(x) + g(x)

5 tháng 4 2018

1) \(A\left(x\right)=-5x^3+3x^4+\frac{5}{7}-8x^2-10x\)

\(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)

\(B\left(x\right)=-2x^4-\frac{2}{7}+7x^2+8x^3+6x\)

\(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)

2)       \(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)

      +

          \(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)

\(A\left(x\right)+B\left(x\right)=x^4+3x^3-x^2-4x+\frac{3}{7}\)

                \(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)

-

                \(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)

\(A\left(x\right)-B\left(x\right)=5x^4-13x^3-15x^2-16x+1\)

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:       P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2  a) Xác định đa thức P(x) và Q(x)  b) Tìm nghiệm của đa thức P(x) và Q(x)  c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1...
Đọc tiếp

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:
       P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2
  a) Xác định đa thức P(x) và Q(x)
  b) Tìm nghiệm của đa thức P(x) và Q(x)
  c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2
Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1 đa thức bậc 5 và có 6 hạng tử
Bài 3: Cho đa thức P(x) = x+ 7x2- 6x3+ 3x4+ 2x2+ 6x- 2x4+ 1
   a) Thu gọn đa thức rồi sắp xếp các số hạng của đa thức theo lũy thừa giảm dần của biến x
   b) Xác định bậc của đa thức, hệ số tự do, hệ số cao nhất
   c) Tính P(-1); P(0); P(1); P(-a)
Bài 4: Cho đa thức bậc hai P(x) = ax2+ bx+ c với a ≠ 0
   a) Chứng tỏ rằng nếu đa thức có nghiệm x = 1 thì sẽ có nghiệm x = \(\dfrac{c}{a}\)
   b) Chứng tỏ rằng nếu đa thức có nghiệm x = -1 thì sẽ có nghiệm x = -\(\dfrac{c}{a} \)

1
7 tháng 4 2018

pan a ban giong bup be lam nhung bup be lam = nhua deo va no del co nao nhe

4 tháng 5 2019

a) A(x) = \(x^2-5x^3+3x+\)\(2x^3\)\(x^2+\left(-5x^3+2x^3\right)+3x\)=\(x^2-3x^3+3x\)

=\(-3x^3+x^2+3x\)

B(x)= \(-x^2+7+3x^3-x-5\)\(-x^2+2+3x^3-x\)

=\(3x^3-x^2-x+2\)

b) A(x) - B(x) = \(-3x^3+x^2+3x\)\(3x^3+x^2+x-2\)

=\(\left(-3x^3-3x^3\right)+\left(x^2+x^2\right)+\left(3x+x\right)-2\)\(-6x^3+2x^2+4x-2\)

vậy A(x) - B(x) =\(-6x^3+2x^2+4x-2\)

c) C(x) = A(x) + B(x) =\(-3x^3+x^2+3x\)\(3x^3-x^2-x+2\)= 2x+2

ta có: C(x) = 0 <=> 2x+2=0

      => 2x=-2

=> x=-1

vậy x=-1 là nghiệm của đa thức C(x)

4 tháng 5 2019

a) A(x)= -3x^3 + x^2 + 3x

B(x)= 3x^3 - x^2 - x +2

b) A(x) - B(x) = - 3x^3 + x^2 + 3x - (3x^3 - x^2 - x + 2)

= -3x^3 + x^2 + 3x - 3x^3 + x^2 + x - 2

= -6x^3 + 2x^2 + 4x -2 

c) C(x) = A(x) + B(x) = - 3x^3 + x^2 + 3x + 3x^3 - x^2 - x +2= 2x + 2

C(x) có nghiệm => C(x)=0 => 2x + 2 = 0 => 2x=-2 => x=-1

Vậy x=-1 là nghiệm của C(x)

14 tháng 4 2018