K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 Xét tam giác ABC có I là tâm đường tròn nội tiếp

\(\Rightarrow S_{ABC}=S_{AIB}+S_{BIC}+S_{CIA}=\frac{1}{2}AB.r+\frac{1}{2}BC.r+\frac{1}{2}CA.r\)

\(=\frac{1}{2}\left(AB+BC+CA\right).r=p.r\)

\(\Rightarrow r=\frac{S_{ABC}}{p}\)

29 tháng 6 2019

Gọi I là tâm đường tròn bàng tiếp góc A của tam giác ABC

Ta có:

SABC=SABI+SACI−SBIC
          
=Rb/2 + Rc/2 − Ra/ 2

        =R. (b+c−a/2)

        =R(p−a)

=> R = S/(p-a) (đpcm)

27 tháng 11 2021

                                                                BÀI LÀM

a, xét tứ giác ADOE có:

góc A= góc E=góc D=90O

mà ta thấy: OE=OD( bán kính = nhau)

vậy tứ giác ADOE là hình vuông (dhnb)

 

 

27 tháng 11 2021

a) Dễ thấy tứ giác AEOD là hình chữ nhật (tứ giác có 3 góc vuông).
Mà OD = OE ( cùng bằng bán kính đường tròn nội tiếp tam giác ABC).
Nên tứ giác AEOD là hình vuông.
b) Gọi H là chân đường vuông góc kẻ từ O xuống BC.

Có SΔABC=SΔOAB+SΔOBC+SΔOAC
                     =12 OD.AB+12 OE.AC+12 OH.BC
                      =12 r.(AB+AC+BC)
                      =12 pr (pp là  chu vi của tam giác ABCABCrr là bán kính đường tròn nội tiếp).
 
c) Áp dụng định lý Pi-ta-go ta có: BC=AB2+AC2=10(cm).
Diện tích tam giác ABC là: 12 AB.AC=12 .6.8=24(cm2).
Chu vi tam giác ABC là: 6+8+10=24(cm).
Suy ra: 24=12 .24.rr=2(cm).

25 tháng 5 2016

Cho tam giác ABC có 3 góc nhọn (AB<AC) nội tiếp đường tròn tâm O. Kẻ đường cao AH của tam giác và đường kính AD của đường tròn (O). Gọi E,F lần lượt là chân đường vuông góc kẻ từ C và B xuống đường thẳng AD. Gọi M là trung điểm ÁD

a) Chứng minh tứ giác BMFO nội tiếp

b) chứng minh HE//BD

c) Chứng minh $S=\frac{AB.AC.BC}{4R}$S=AB.AC.BC4R     ( Với S là diện tích tam giác ABC, R là bán kính đường tròn (O) )

Chịu @ _@

18 tháng 1 2021

Hình như câu b chưa rõ lắm, tam giác ABC cân tại đâu?

18 tháng 1 2021

đề chỉ ghi tam giác cân thôi bạn

10 tháng 5 2020

Giải chi tiết:

a) Chứng minh tứ giác AB’HC’ nội tiếp đường tròn.

Xét tứ giác AB’HC’ có ∠AB′H+∠AC′H=900+900=1800⇒∠AB′H+∠AC′H=900+900=1800⇒ Tứ giác AB’HC’ là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng 1800).

b) Gọi I là giao điểm của hai đường thẳng HD và BC. Chứng minh I là trung điểm của đoạn BC.

Ta có ∠ABD=900∠ABD=900 (góc nội tiếp chắn nửa đường tròn) ⇒AB⊥BD⇒AB⊥BD.

Mà CH⊥AB(gt)⇒BD∥CHCH⊥AB(gt)⇒BD∥CH

Chứng minh tương tự ta có CD∥BHCD∥BH.

⇒⇒ Tứ giác BHCD là tứ giác nội tiếp (Tứ giác có các cặp cạnh đối song song)

Mà BC∩HD=I(gt)⇒IBC∩HD=I(gt)⇒I là trung điểm của BC.

c) Tính AHAA′+BHBB′+CHCC′AHAA′+BHBB′+CHCC′.

Ta có:

SHBCSABC=12HA′.BC12AA′.BC=HA′AA′⇒1−SHBCSABC=1−HA′AA′=AA′−HA′AA′=AHAA′SHBCSABC=12HA′.BC12AA′.BC=HA′AA′⇒1−SHBCSABC=1−HA′AA′=AA′−HA′AA′=AHAA′

Chứng minh tương tự ta có: BHBB′=1−SHACSABC;CHCC′=1−SHABSABCBHBB′=1−SHACSABC;CHCC′=1−SHABSABC

⇒AHAA′+BHBB′+CHCC′=1−SHBCSABC+1−SHACSABC+1−SHABSABC=3−SHBC+SHAC+SHABSABC=3−1=2⇒AHAA′+BHBB′+CHCC′=1−SHBCSABC+1−SHACSABC+1−SHABSABC=3−SHBC+SHAC+SHABSABC=3−1=2