Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) M=2018+|1-2x|
nhận thấy:|1-2x|>=0 với mọi x=> M =2018+|1-2x|>=2018
dấu"=" xảy ra <=>|1-2x|=0<=>1-2x=0=>2x=1=>x=1/2
vậy giá trị nhỏ nhất của M=2018<=>x=1/2
b)N=2018-(1-2x)^2018
nhận thấy;(1-2x)^2018>=0 với mọi x=>-(1-2x)<=0 với mọi x=>N=2018-(1-2x)^2018<=2018
dấu bằng xảy ra <=>(1-2x)^2018=0=>1-2x=0=>2x=1=>x=1/2
vậy giá trị lớn nhất của N=2018<=>x=1/2
c)P=7+|x-1|+|2-x|
áp dụng |A|+|B|>=|A+B|. dấu "=" xảy ra<=>A.B=0 ta có
P=7+|x-1|+|2-x|>=7+|x-1+2-x|=7+1+8
dấu "=" xảy ra <=>(x-1). (2-x)=0
<=>x-1=0 hoặc 2-x=0<=>x=1 hoặc x=2
vậy giá trị nhỏ nhất của P=8<=> x=1 hoặc x=2
giá trị tuyệt đối x+10 lớn hơn hoăc bằng 0
=> giá trị tuyệt đối x+10 cộng với 2005
sẽ lớn hơn hoăc bằng 2005 => A lớn hơn hoăc bằng 2005
Dấu bằng xảy ra <=> giá trị tuyệt đối x+10 bằng 0
=> x=-10
Vậy Min B = 2005 <=> x=-10
Bài 1:
a)|x-2|=x-2
<=>x-2=-(x-2) hoặc (x-2)
- Với x-2=-(x-2)
=>x-2=-x+2
=>x=2
- Với x-2=x-2.Ta thấy 2 vế cùng có số hạng giống nhau =>mọi \(x\in R\)đều thỏa mãn
b)|2x+3|=5x-1
=>2x+3=-(5x-1) hoặc 5x-1
- Với 2x+3=-(5x-1)
=>2x+3=-5x+1
=>x=-2/7 (loại)
- Với 2x+3=5x-1
=>x=4/3
Bài 2:
a)Ta thấy:\(\begin{cases}\left|x-2\right|\\\left|3+y\right|\end{cases}\ge0\)
\(\Rightarrow\left|x-2\right|+\left|3+y\right|\ge0\)
\(\Rightarrow A\ge0\)
Dấu = khi \(\begin{cases}\left|x-2\right|=0\\\left|3+y\right|=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=2\\y=-3\end{cases}\)
Vậy MinA=0 khi x=2; y=-3
b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) và dấu = khi \(ab\ge0\) ta có:
\(\left|x-2016\right|+\left|x-2017\right|\ge\left|x-2016+2017-x\right|=1\)
\(\Rightarrow B\ge1\)
Dấu = khi \(ab\ge0\)\(\Leftrightarrow\left(x-2016\right)\left(x-2017\right)\ge0\)\(\Leftrightarrow\begin{cases}\left(x-2016\right)\left(x-2017\right)\\2016\le x\le2017\end{cases}\)
\(\Leftrightarrow\begin{cases}x=2016\\x=2017\end{cases}\)
Vậy MinB=1 khi x=2016 hoặc 2017
Ta có \(\left|x-2015\right|\ge0\)
\(\Rightarrow\left|x-2015\right|+2\ge2\)
\(\Rightarrow\frac{2016}{\left|x-2015\right|+2}\le\frac{2016}{2}=1008\)
\(\Rightarrow GTLN\)của biểu thức là 1008 khi \(\left|x-2015\right|=0\Rightarrow x-2015=0\Rightarrow x=2015\)
Vậy GTLN của \(\frac{2016}{\left|x-2015\right|+2}\)là 1008 khi x=2015
A chỉ có giá trị lớn nhất khi |x+1|=0
\(\Rightarrow\)x = -1
ta có : A =\(\frac{15\left|x+1\right|+32}{6\left|x+1\right|+8}\)=\(\frac{15\left|-1+1\right|+32}{6\left|-1+1\right|+8}\)=\(\frac{15.0+32}{6.0+8}\)=\(\frac{32}{8}\)=4
Vậy giá trị lớn nhất của A là 4
\(B=12-\left(x+4\right)\)
\(\left(x+4\right)\le0\)
\(12-\left(x+4\right)\le12\)
Vậy GTLN là 12
Dấu " = " xảy ra khi x + 4 = 0 => x = -4