Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử \(8>\sqrt{15}+\sqrt{17}\)
\(\Leftrightarrow64>32+2\sqrt{15×17}\)
\(\Leftrightarrow16>\sqrt{\left(16-1\right)\left(16+1\right)}=\sqrt{16^2-1}\left(dung\right)\)
Vậy \(8>\sqrt{15}+\sqrt{17}\)
dsadasdsadsadsasddấdasdasdadấdadsdsđasdasđdsaádasdasdádaddadadaddadadaddâdadaad
\(\left(\sqrt{26}+3\right)^2=35+6\sqrt{26}\)
\(\left(\sqrt{63}\right)^2=63=35+28\)
mà \(6\sqrt{26}>28\)
nên \(\sqrt{26}+3>\sqrt{63}\)
\(\left(\sqrt{2013}+\sqrt{2015}\right)^2=2013+2015+2\sqrt{2013.2015}=4028+2\sqrt{2013.2015}\)
\(\left(2\sqrt{2014}\right)^2=4.2014=4028+2\sqrt{2014^2}\)
Ta có: \(2013.2015=2014^2-1< 2014^2\)
Do đó \(\sqrt{2013}+\sqrt{2015}< 2\sqrt{2014}\)
Ta giả sử \(4\) và \(\sqrt{7}\) (*) là \(a\) và \(b\left(a,b>0\right)\) thì ta có điều hiển nhiên sau : \(a+b>a-b\)
Đặt căn ở hai bên ta được : \(\sqrt{a+b}>\sqrt{a-b}\)
Thế (*) vào ta được : \(\sqrt{4+\sqrt{7}}>\sqrt{4-\sqrt{7}}\)
Do VT > VP nên trừ ở VP đi một số thực dương sẽ không đổi chiều dấu
Nên ta suy ra được \(\sqrt{4+\sqrt{7}}>\sqrt{4-\sqrt{7}}-\sqrt{2}\)
Hay viết cách khá là \(A>B\)
A=Căn ( 4 + căn 7) ...... B= Căn ( 4 - Căn 7 ) - Căn 2
xét:
Nếu A < B
Thì Căn (4 + căn 7) > Căn (4 - Căn7) - Căn 2
Nếu Căn (4+ căn 7) = 0
Thì Căn (4+Căn7) - Căn 2 = 0
Mà B= Căn (4 - Căn 7) ( Tức nhỏ hơn Căn (4 + căn 7)
=> A > B
Đầu tiên ta bình phương tất cả:
\(\sqrt{3^2}=3\)
\(5^2=25\)
\(\sqrt{8^2}=8\)
Sau khi bình phương ta có:
3 ... 25 - 8
3 < 17
=> \(\sqrt{3}< 5-\sqrt{8}\)