Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}-3x=7y=21z\\5x+10y+6z=4\end{cases}}\)
Tách thành 2 phương trình:\(\hept{\begin{cases}-3x=7y\\-3x=21z\\5x+10y+6z=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-\frac{7}{3}\\x=-7z\\5x+10y+6z=4\end{cases}}\)
Thế giá trị đã cho vào: \(\hept{\begin{cases}-\frac{7}{3}y=-7z\\5\left(-\frac{7}{3}y\right)+10y+6z=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-7y+21x=0\\-5y+18z=12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}35y-105z=0\\-35y+126z=84\end{cases}}\)
\(\Rightarrow21z=84\Rightarrow z=4\)
Thay giá trị của z vào phương trình: \(-7y+21\times4=0\)
\(\Rightarrow y=12\)
Thay giá trị của y vào phương trình: \(x=-\frac{7}{3}\times12\Rightarrow x=-28\)
Từ đẳng thức -3x = 7y = 21z
=> \(\hept{\begin{cases}-3x=7y\\7y=21z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{7}=\frac{y}{-3}\\\frac{y}{21}=\frac{z}{7}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{-49}=\frac{y}{21}\\\frac{y}{21}=\frac{z}{7}\end{cases}\Rightarrow}\frac{x}{-49}=\frac{y}{21}=\frac{z}{7}\Leftrightarrow\frac{5x}{-245}=\frac{10y}{210}=\frac{6z}{42}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{-49}=\frac{y}{21}=\frac{z}{7}=\frac{5x}{245}=\frac{10y}{210}=\frac{6z}{42}=\frac{5x+10y+6z}{-245+210+42}=\frac{4}{7}\)
=> \(\hept{\begin{cases}x=-28\\y=12\\z=4\end{cases}}\)
\(\frac{x}{2}\)= \(\frac{y}{3}\); \(\frac{y}{4}\)= \(\frac{z}{5}\)và x + y - z = 10
\(\Rightarrow\)\(\frac{x}{8}\)= \(\frac{y}{12}\); \(\frac{y}{12}\)= \(\frac{z}{15}\)
\(\Rightarrow\)\(\frac{x}{8}\)= \(\frac{y}{12}\)= \(\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau: \(\frac{x}{8}\)= \(\frac{y}{12}\)= \(\frac{z}{15}\)= \(\frac{x+y-z}{8+12-15}\)= \(\frac{10}{5}\)= 2
\(\hept{\begin{cases}\frac{x}{8}=2\\\frac{y}{12}=2\\\frac{z}{15}=2\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}x=16\\y=24\\z=30\end{cases}}\)
Vậy x= 16
y= 24
z= 30
d) 2x = 3y ; 5x = 7z và 3x - 7y + 5x = 3
\(\Rightarrow\)\(\frac{x}{3}\)= \(\frac{y}{2}\); \(\frac{x}{7}\)= \(\frac{z}{5}\)
\(\Rightarrow\)\(\frac{x}{21}\)= \(\frac{y}{14}\); \(\frac{x}{21}\)= \(\frac{z}{15}\)
\(\Rightarrow\)\(\frac{x}{21}\)= \(\frac{y}{14}\)= \(\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau: \(\frac{x}{21}\)= \(\frac{y}{14}\)= \(\frac{z}{15}\)\(\Rightarrow\)\(\frac{3x}{63}\)= \(\frac{7y}{98}\)= \(\frac{5z}{75}\)= \(\frac{3x-7y+5z}{63-98+75}\)= \(\frac{30}{40}\)=\(\frac{3}{4}\)
\(\hept{\begin{cases}\frac{x}{21}=\frac{3}{4}\\\frac{y}{14}=\frac{3}{4}\\\frac{z}{15}=\frac{3}{4}\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}x=\frac{63}{4}\\y=\frac{21}{2}\\z=\frac{45}{4}\end{cases}}\)
Vậy x= \(\frac{63}{4}\)
y= \(\frac{21}{2}\)
z= \(\frac{45}{4}\)
a) Theo bài ra , ta có : x : y : z = 3 : 5 : ( -2 )
=> \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\) => \(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\) và 5x - y + 3z = -16
Áp dụng t/c của dãy tỉ số = nhau , ta có :
\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{-16}{-4}=4\)
\(\frac{x}{3}=4\Rightarrow x=4.3=12\\ \frac{y}{5}=4\Rightarrow y=4.5=20\\ \frac{z}{-2}=4\Rightarrow z=-2.4=-8\)
Vậy x = 12 ; y = 20 ; z = -8
a) Ta có : x : y : z = 3 : 5 : (-2) \(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\Rightarrow\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+-6}=-\frac{16}{4}=-4\)
\(\Rightarrow\begin{cases}\frac{5x}{15}=4\\\frac{y}{5}=4\\\frac{3z}{-6}=4\end{cases}\Rightarrow\begin{cases}5x=4.15\\y=4.5\\3z=4.\left(-6\right)\end{cases}\Rightarrow\begin{cases}5x=60\\y=20\\3z=-24\end{cases}\Rightarrow\begin{cases}x=12\\y=20\\z=-8\end{cases}\)
b) 2x = 3y \(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\) (1)
5y = 7z \(\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5x}{63-98+50}=\frac{30}{15}=2\)
\(\Rightarrow\begin{cases}\frac{3x}{63}=2\\\frac{7y}{98}=2\\\frac{5z}{50}=2\end{cases}\Rightarrow\begin{cases}3x=2.63\\7y=2.98\\5z=2.50\end{cases}\Rightarrow\begin{cases}3x=126\\7y=196\\5z=100\end{cases}\Rightarrow\begin{cases}x=42\\y=28\\z=20\end{cases}\)
c) x : y : z = 4 : 5 : 6 \(\Rightarrow\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{x^2}{16}=\frac{y^2}{25}=\frac{z^2}{36}\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)
\(\Rightarrow\begin{cases}x^2=9.16\\2y^2=9.50\\z^2=9.36\end{cases}\Rightarrow\begin{cases}x^2=144\\y^2=450\div2=225\\z^2=324\end{cases}\Rightarrow\begin{cases}x=\pm12\\y=\pm15\\z=\pm18\end{cases}\)
Vậy x = 12 ; y = 15 ; z = 18
hoặc x = -12 ; y = -15 ; z = -18
Có:\(-3x=7y=21z\Leftrightarrow\frac{x}{-7}=\frac{y}{3}=\frac{z}{1}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{-7}=\frac{y}{3}=\frac{z}{1}=\frac{5x}{-35}=\frac{10y}{30}=\frac{6z}{6}=\frac{5x+10y+6x}{-35+30+6}=\frac{4}{1}=4\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{-7}=4\\\frac{y}{3}=4\\\frac{z}{1}=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-28\\y=12\\z=4\end{matrix}\right.\)
Vậy \(x=-28;y=12;z=4\)
a) Ta có: \(-3x=7y=21z\)
\(\Rightarrow-3x\cdot\frac{1}{21}=7y\cdot\frac{1}{21}=21z\cdot\frac{1}{21}\)
\(\Rightarrow\frac{x}{-7}=\frac{y}{3}=\frac{z}{1}=\frac{5x}{-35}=\frac{10y}{30}=\frac{6z}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{5x}{-35}=\frac{10y}{30}=\frac{6z}{6}=\frac{5x+10y+6z}{-35+30+6}=\frac{4}{1}=4\)
\(\Rightarrow\hept{\begin{cases}\frac{5x}{-35}=4\rightarrow5x=-140\rightarrow x=-28\\\frac{10y}{30}=4\rightarrow10y=120\rightarrow y=12\\\frac{6z}{6}=4\rightarrow z=4\end{cases}}\)
Vậy x= -28; y=12; z=4
b) Ta có: \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{5}\rightarrow\frac{x}{6}=\frac{y}{15}\\\frac{y}{3}=\frac{z}{20}\rightarrow\frac{y}{15}=\frac{z}{100}\end{cases}}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{100}\)
Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{100}=k\)
\(\Rightarrow x=6k;y=15k;z=100k\)
\(y\cdot z=900\rightarrow15k\cdot100k=900\)
\(\rightarrow1500\cdot k^2=900\)
\(\rightarrow k^2=\frac{3}{5}\rightarrow k\varepsilon\varnothing\)
Vậy x;y;z ko có giá trị thỏa mãn
c) Ta có: \(\frac{x}{2}=\frac{y}{5}=\frac{x^2}{4}=\frac{y}{25}^2\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{4}=\frac{y^2}{25}=\frac{x^2+y^2}{4+25}=\frac{116}{29}=4\)
\(\Rightarrow\hept{\begin{cases}\frac{x^2}{4}=4\rightarrow x^2=16\rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\\\frac{y^2}{25}=4\rightarrow y^2=100\rightarrow\orbr{\begin{cases}y=10\\y=-10\end{cases}}\end{cases}}\)\(\Rightarrow\frac{x^2}{4}=4\rightarrow x^2=16\rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
\(\frac{y^2}{25}=4\rightarrow y^2=100\rightarrow\orbr{\begin{cases}y=10\\y=-10\end{cases}}\)
Vậy (x;y) = (4;10); (-4;-10)