K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 1 2020

Bài 1:

\(2n+3\vdots n-2\)

\(2(n-2)+7\vdots n-2\)

\(7\vdots n-2\)

\(\Rightarrow n-2\in \text{Ư(7)}\Rightarrow n-2\in\left\{\pm 1;\pm 7\right\}\)

\(\Rightarrow n\in \left\{1;3;-5;9\right\}\)

Mà $n$ là số tự nhiên nên $n=1,3,9$

AH
Akai Haruma
Giáo viên
4 tháng 1 2020

Bài 2:

\(3n+1\vdots 1-2n\)

\(\Rightarrow 2(3n+1)\vdots 1-2n\)

\(\Rightarrow 6n+2\vdots 1-2n\)

\(\Rightarrow 5-3(1-2n)\vdots 1-2n\)

\(\Rightarrow 5\vdots 1-2n\Rightarrow 1-2n\in\left\{\pm 1;\pm 5\right\}\)

\(\Rightarrow n\in\left\{0; 1;3; -2\right\}\)

Vì $n$ là số tự nhiên nên $n=0,1,3$

16 tháng 2 2019

4n+3 chia hết cho 3n-2 

<=> 3(4n+3)-4(3n-2) chia hết cho 3n-2

<=>17 chia hết cho 3n-2

<=>3n-2 E {-1;1;17;-17}

<=> 3n E {1;3;19;-15} loại các TH n ko nguyên

=>n  E {1;-5}. Vậy.....

16 tháng 2 2019

2n+3 chia hết cho n-1

<=> 2n+3-2(n-1) chia hết cho n-1

<=>5 chia hết cho n-1

<=> n-1 E {-1;1;5;-5}

<=> n E {0;2;6;-4}

bài nào chứ mấy bài này dài ngoằng =((

28 tháng 12 2016

1 . goi UCLN ( 2n + 1,6n + 5 ) la d

=> 2n + 1 chia hết cho d (1)

6n + 5 chia hết cho d  (2)

từ (1)=> 6 x ( 2n + 1 ) = 12n + 6 chia hết cho d (3)

từ (2) => 2 x ( 6n + 5 ) = 12n + 10  chia hết cho d (4)

Tu (3) va (4) => ( 12n + 10 ) - (12n + 6 ) chia het cho d

hay 4 chia hết cho d=> d thuộc { 1,2,4}

Mà d là lớn nhất => d = 4

2). 2x + 11 chia hết cho x + 3

(2x + 6 ) + 5 chia het cho x + 3

2 x ( x + 3 ) + 5 chia hết cho x + 3 (1)

Ma 2 x ( x + 3 ) chia het cho x + 3 (2)

Từ (1) và (2) => 5 chia hết cho x + 3

=> X + 3 thước U của 5 hay x + 3 thuộc { 1,5}

                                           x thuộc { -2,2}

Mà x thuộc N => x = 2

3 tháng 2 2018

2)

a) 2n+5 chia het cho n-1 

=> 2(n-1) +7 chia het cho n-1 

=: n-1 thuoc uoc cua 7 den day ke bang la xong. 

may cau con lai lam tuong tu

3 tháng 2 2018

dài quá ko mún làm

1 tháng 11 2016

3n-1\(⋮\)n+1

3(n+1)\(⋮\)n+1

3n-1+3(n+1)\(⋮\)n+1

3n-1+3n-3\(⋮\)n+1

4\(⋮\)n+1

\(\Rightarrow\)n+1={1;2;4}

\(\Rightarrow\)n={0;1;3}

2 tháng 11 2016

Thêm vào cuối

n={0;1;3}

20 tháng 11 2019

a) Ta có:

\(n^2+3n+2\)

\(=n^2+n+2n+2\)

\(=n\left(n+1\right)+2\left(n+1\right)\)

\(=\left(n+1\right)\left(n+2\right)\)

Vì \(n+1⋮n+1\)

\(\Rightarrow n+2⋮n+1\)

Ta có:

\(n+2=n+1+1\)

Vì \(n+1⋮n+1\)

\(\Rightarrow1⋮n+1\)

\(\Rightarrow n+1\inƯ\left(1\right)\)

\(\RightarrowƯ\left(1\right)\in\left\{-1;1\right\}\)

\(\Rightarrow\hept{\begin{cases}n+1=-1\\n+1=1\end{cases}\Rightarrow\hept{\begin{cases}n=-2\left(l\right)\\n=0\left(tm\right)\end{cases}}}\)

Vậy \(n=0\)