Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có: \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{4}\right)^2\ge0\\\left|y+\dfrac{1}{4}\right|\ge0\end{matrix}\right.\Rightarrow\left(x-\dfrac{1}{4}\right)^2+\left|y+\dfrac{1}{4}\right|\ge0\)
\(\Rightarrow A=\left(x-\dfrac{1}{4}\right)^2+\left|y+\dfrac{1}{4}\right|+\dfrac{13}{14}\ge\dfrac{13}{14}\)
Dấu " = " khi \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{4}\right)^2=0\\\left|y+\dfrac{1}{4}\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-\dfrac{1}{4}=0\\y+\dfrac{1}{4}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{4}\\y=\dfrac{-1}{4}\end{matrix}\right.\)
Vậy \(MIN_A=\dfrac{13}{14}\) khi \(x=\dfrac{1}{4};y=-\dfrac{1}{4}\)
\(S=\dfrac{3}{5.7}+\dfrac{3}{7.9}+....+\dfrac{3}{59.61}\)
\(S=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+......+\dfrac{1}{59}-\dfrac{1}{61}\)
\(S=\left(\dfrac{1}{5}-\dfrac{1}{7}\right)+\left(\dfrac{1}{7}-\dfrac{1}{9}\right)+...+\left(\dfrac{1}{59}-\dfrac{1}{61}\right)\)
\(S=\dfrac{1}{5}-\dfrac{1}{61}\)
\(S=\dfrac{56}{305}\)
Vậy S = \(\dfrac{56}{305}\)
\(S=\dfrac{3}{5.7}+\dfrac{3}{7.9}+...+\dfrac{3}{59.61}\)
\(S=\dfrac{3}{2}\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\right)\)
\(S=\dfrac{3}{2}.\left(\dfrac{1}{5}-\dfrac{1}{61}\right)=\dfrac{3}{2}.\dfrac{56}{305}=\dfrac{84}{305}\)
a, Ta có: \(\dfrac{32}{37}>\dfrac{32}{54}>\dfrac{19}{54}\Rightarrow\dfrac{32}{37}>\dfrac{19}{54}\)
b, Ta có: \(\dfrac{18}{53}>\dfrac{18}{54}=\dfrac{1}{3}\Rightarrow\dfrac{18}{53}>\dfrac{1}{3}\left(1\right)\)
\(\dfrac{26}{78}=\dfrac{1}{3}\left(2\right)\)
Từ (1) và (2) ta suy ra \(\dfrac{18}{53}>\dfrac{26}{78}\)
c, Ta thấy: \(\dfrac{25}{103}< \dfrac{25}{100}=\dfrac{1}{4}\left(1\right)\)
\(\dfrac{74}{295}>\dfrac{74}{296}=\dfrac{1}{4}\left(2\right)\)
Từ (1) và (2) ta suy ra \(\dfrac{25}{103}< \dfrac{74}{295}\)
S = \(\dfrac{3}{1.2}\)+\(\dfrac{3}{2.3}\)+\(\dfrac{3}{3.4}\)+\(\dfrac{3}{4.5}\)+...+\(\dfrac{3}{2015.2016}\)
= 3.\(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2015.2016}\right)\)
= 3.\(\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2015}-\dfrac{1}{2016}\right)\)
= 3.\(\left(1-\dfrac{1}{2016}\right)\) = 3.\(\dfrac{2015}{2016}\)=\(\dfrac{3.2015}{2016}\)=\(\dfrac{1.2015}{672}\)=\(\dfrac{2015}{672}\)
Vậy S = \(\dfrac{2015}{672}\)
Ta có S=\(\dfrac{3}{1.2}+\dfrac{3}{2.3}+\dfrac{3}{3.4}+\dfrac{3}{4.5}+...+\dfrac{3}{2015.2016}\)
=3.(\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2015.2016}\))
=3.(\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2015}-\dfrac{1}{2016}\))
=\(3.\left(1-\dfrac{1}{2016}\right)\)
= \(3-\dfrac{1}{672}\)=\(\dfrac{2015}{672}=2\dfrac{671}{672}\)
A =\(\dfrac{4}{2.5}+\dfrac{4}{5.8}+\dfrac{4}{8.11}+...+\dfrac{4}{65.68}\)
A = \(\dfrac{4}{3}.\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{65.68}\right)\)
A = \(\dfrac{4}{3}.\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{65}-\dfrac{1}{68}\right)\)
A = \(\dfrac{4}{3}.\left[\dfrac{1}{2}-\left(\dfrac{1}{5}-\dfrac{1}{5}\right)-\left(\dfrac{1}{8}-\dfrac{1}{8}\right)-\left(\dfrac{1}{11}-\dfrac{1}{11}\right)-...-\left(\dfrac{1}{65}-\dfrac{1}{65}\right)-\dfrac{1}{68}\right]\)
A = \(\dfrac{4}{3}.\left[\dfrac{1}{2}-0-0-0-...-0-\dfrac{1}{68}\right]\)
A = \(\dfrac{4}{3}.\left[\dfrac{1}{2}-\dfrac{1}{68}\right]\)
A = \(\dfrac{4}{3}.\dfrac{33}{68}\)
A = \(\dfrac{11}{17}\)
\(\dfrac{x-7}{y-6}=\dfrac{7}{6}\)
\(\Leftrightarrow6\left(x-7\right)=7\left(y-6\right)\)
\(6x-42=7y-42\)
\(6x=7y\Leftrightarrow x=\dfrac{7}{6}y\)
\(x=-4:\left(7-6\right).7=-28\)
\(y=-28-4=-24\)
b tương tự
Giải:b)
\(\dfrac{x-7}{y-6}=\dfrac{7}{6}\) nên \(6\left(x-7\right)=7\left(y-6\right)\)
Do đó \(6x-42=7y-42\) nên \(6x=7y\)
Suy ra \(6x-6y=y\) hay \(6\left(x-y\right)=y\)
Nên 6.(-4) = y
Vậy y = -24, x = \(\dfrac{7.\left(-24\right)}{6}\)= -28
c)
\(\dfrac{x+3}{y+5}=\dfrac{3}{5}\) nên \(5\left(x+3\right)=3\left(y+5\right)\)
Do đó \(5x+15=3y+15\) nên \(5x=3y\)
Suy ra \(5x+5y=3y+5y\)
\(5\left(x+y\right)=8y\)
\(5.16=8y\)
Nên \(y=\dfrac{5.16}{8}=\dfrac{80}{8}=10\)
Vậy y = 10, x = 16 - 10 =6
\(0,5x-\dfrac{2}{3}x=\dfrac{5}{12}\)
\(\Rightarrow\dfrac{1}{2}x-\dfrac{2}{3}x=\dfrac{5}{12}\)
\(\Rightarrow x\left(\dfrac{1}{2}-\dfrac{2}{3}\right)=\dfrac{5}{12}\)
\(\Rightarrow x\dfrac{-1}{6}=\dfrac{5}{12}\)
\(\Rightarrow x=\dfrac{-5}{2}\)
Vậy .......
Ta có: 0,5x-\(\dfrac{2}{3}\)x =\(\dfrac{5}{12}\)
\(\Leftrightarrow\) \(x\left(0,5-\dfrac{2}{3}\right)=\dfrac{5}{12}\)
\(\Leftrightarrow-\dfrac{1}{6}x =\dfrac{5}{12}\)
\(\Leftrightarrow x=-\dfrac{5}{2}\)
Sao dốt thế
Ta có:A-1=\(\dfrac{10^8+2}{10^8-1}-1=\dfrac{10^8+2-10^8+1}{10^8-1}=\dfrac{3}{10^8-1}\)
B-1=\(\dfrac{10^8}{10^8-3}-1=\dfrac{10^8-10^8+3}{10^8-3}=\dfrac{3}{10^8-3}\)
Do \(\dfrac{3}{10^8-1}>\dfrac{3}{10^8-3}\)
=>A-1>B-1
<=>A>B
Vậy...
a, Giải:
Ta có: \(\dfrac{x}{5}=\dfrac{y}{7}\Rightarrow\dfrac{7}{5}x=y\)
\(x-y=-10\)
\(\Rightarrow x-\dfrac{7}{5}x=-10\)
\(\Rightarrow\dfrac{-2}{5}x=-10\)
\(\Rightarrow x=25\Rightarrow y=35\)
Vậy x = 25, y = 35
b, Giải:
Ta có: \(3x=4y\Rightarrow\dfrac{3}{4}x=y\)
\(y+x=14\)
\(\Rightarrow\dfrac{3}{4}x+x=14\)
\(\Rightarrow\dfrac{7}{4}x=14\)
\(\Rightarrow x=8\Rightarrow y=6\)
Vậy x = 8, y = 6
c, Ta có: \(\dfrac{4}{x}=\dfrac{2}{y}\Rightarrow\dfrac{x}{4}=\dfrac{y}{2}\Rightarrow x=2y\)
\(2x-y=12\)
\(\Rightarrow4y-y=12\)
\(\Rightarrow3y=12\)
\(\Rightarrow y=4\)
\(\Rightarrow x=8\)
Vậy x = 8, y = 4
a) Ta có: \(\dfrac{x}{5}=\dfrac{y}{7}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5k\\y=7k\end{matrix}\right.\)
Do \(x-y=-10\Leftrightarrow5k-7k=-10\)
\(\Leftrightarrow\left(5-7\right)k=-10\)
\(\Leftrightarrow\left(-2\right)k=-10\)
\(\Leftrightarrow k=\left(-10\right):\left(-2\right)=5\)
\(\Rightarrow\left\{{}\begin{matrix}x=5k=5.5=25\\y=7k=7.5=35\end{matrix}\right.\)
b) Xét \(3x=4y\Leftrightarrow\dfrac{x}{4}=\dfrac{y}{3}=m\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4m\\y=3m\end{matrix}\right.\)
Do \(y+x=14\Leftrightarrow3m+4m=14\)
\(\Leftrightarrow\left(3+4\right)m=14\)
\(\Leftrightarrow7m=14\)
\(\Leftrightarrow m=14:7=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=4m=4.2=8\\y=3m=3.2=6\end{matrix}\right.\)
c) Ta có \(\dfrac{4}{x}=\dfrac{2}{y}=n\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{n}\\y=\dfrac{2}{n}\end{matrix}\right.\)
Do \(2x-y=12\Leftrightarrow2.\dfrac{4}{n}-\dfrac{2}{n}=12\)
\(\Leftrightarrow\dfrac{8}{n}-\dfrac{2}{n}=12\)
\(\Leftrightarrow\dfrac{6}{n}=12\)
\(\Leftrightarrow n=\dfrac{6}{12}=\dfrac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{4}{n}=\dfrac{4}{\dfrac{1}{2}}=8\\y=\dfrac{2}{n}=\dfrac{2}{\dfrac{1}{2}}=4\end{matrix}\right.\)