Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(n^2 - 1 = (n-1)(n+1)\)
\(n \) là nguyên tố lớn hơn \(3 \implies n-1;n+1\) là hai số chẵn liên tiếp
\(=> (n-1)(n+1) \) chia hết cho \(8\) \((1)\)
Vì \(n \) là nguyên tố lớn hơn 3 nên ta có : \(n = 3k +1 ; 3k +2\) \((2)\)
Với \(n= 3k + 1\)
\(=> (n-1)(n+1) = (3k+1-1)(n+1) = 3k(n+1) \) chia hết cho 3
Với \(n = 3k+2\)
\(=> (n-1)(n+1) = (n-1)(3k+2+1) = (n-1)(k+1)3 \) chi hết cho 3
- Từ \((1) \),\((2)\) ta thấy \((n-1)(n+1) = n^2 -1\) chia hết cho cả \(8;3\)
\(=> n^2 - 1 \) chia hết cho \(24 (đpcm)\)
1,
a/ n2 + 12n vay n co the = 2;3;5;7;11;...
=> nhung so nguyen to co 1 chu so vay n=2;3;5;7
b/ 3n + 6 vay n co the = 2;3;5;7;11;....
=> nhung so nguyen to + vao sao cho 6 ko qua 1 chu so vay n=2;3
a,
1000! = 1.2.3...1000
+) Các số chứa đúng lũy thừa 73 (= 343) từ 1 đến 1000 là: 343; 686 => có 2 x 3 = 6 thừa số 7
+) Các số chứa lũy thừa 72 từ 1 đến 1000 là: 49; .....; 980 => có (980 - 49) : 49 + 1= 20 số , trừ 2 số 343; 686
=> có 18 số chứa đúng lũy thừa 72 => 18 x 2 = 36 thừa số 7
+) Các số chứa lũy thừa 7 từ 1 đến 1000 là: 7 ; 14; ...; 994 => có (994 - 7) : 7 + 1 = 142 số , trừ 20 chứa 72 trở lên
=> có 142 - 20 = 122 số chứa đúng 1 thừa số 7
Vậy có tất cả 6 + 36 + 122 = 164 thừa số 7
=> 1000! phân tích ra thừa số nguyên tố chứa 7164
b,
n2 + 2n = n2 + 2n.1 = n2 + 2n.1 + 1 - 1 = n2 + 2n.1 + 12 - 1 = (n2 + 2n.1 + 12) - 1
Sử dụng hằng đẳng thức: (Bạn tự tìm hiểu về 7 hằng đẳng thức đáng nhớ)
\(\Rightarrow\) (n+1)2 - 1
mà (n+1)2 là số chính phương
\(\Rightarrow\) (n+1)2 - 1 chỉ có thể là 0
\(\Rightarrow\) n chỉ có thể là 0
nhanh lên nhé các bạn trả lời nhanh và đúng thì mình tích cho
sao ko ai trả lời zậy
Nếu n = 2 thì hai số trên không thể là hai số nguyên tố
Nếu n lớn hơn 2 thì hai số trên không thể là hai số nguyên tố
=>Hai số trên không phải là số nguyên tố