Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số có 2 chữ số đó là ab.
Ta có: \(a+b=9\)(1)
Và: \(\overline{ba}=\frac{2}{9}\overline{ab}\Rightarrow9\cdot\left(10b+a\right)=2\left(10a+b\right)\Rightarrow88b=11a\Rightarrow a=8b\)(2)
Từ (1) và (2) => a=8; b = 1. Số đó là 81.
Gọi ab là số phải tìm. Số viết ngược lại là ba.
ba = 2/9 ab
10b + a = 2/9 ( 10a + b )
9 ( 10b + a ) = 2 ( 10a + b )
90b + 9a = 20a + 2b
90b - 2b = 20a - 9a
88b = 11a
8b = a
Vậy a = 8 ; b = 1.
Số phải tìm là 81.
Gọi số đó là ab, ta có hpt: a2 + b2 = ab + a.b và ab + 36 = ba
=> a = 7; b = 8 => ab = 78
gọi số đó là ab
theo đề bài có hệ phương trình
a^2 + b^2 = ab + a x b
ab + 36 = ba
giải hệ được ab là 48
Gọi chữ số hàng chục là x (0<x<9)
Gọi chữ số hàng đơn vị là y(0<y<9)
Vì tổng các chữ số bằng 6 ta có :
\(x+y=6\) (1)
Nếu thêm vào số đó 18 đơn vị thì được một số cũng viết bằng các chữ số đó nhưng theo thứ tự ngược lại nên ta có pt:
\(\left(10x+y\right)+18=10y+x\)
\(\Leftrightarrow\) \(9x-9y=-18\)
\(\Leftrightarrow\) \(x-y=-2\) (2)
Từ (1) và (2) ta có hệ :
\(\hept{\begin{cases}x+y=6\\x-y=2\end{cases}}\)
giải ra ta được :\(\hept{\begin{cases}x=2\\y=4\end{cases}}\) (tm)
Vậy số tự nhiên có 2 chữ số đó là 24
Gọi số đó có dạng \(\overline{xy}=10x+y\) với x;y là các số tự nhiên từ 1 tới 9
Do số đó gấp 4 lần tổng các chữ số của nó nên ta có:
\(10x+y=4\left(x+y\right)\Rightarrow2x-y=0\)
Khi viết ngược số đó ta được số mới có giá trị là: \(10y+x\)
Do số mới lớn hơn số ban đầu 36 đơn vị nên:
\(10y+x-\left(10x+y\right)=36\Rightarrow y-x=4\)
Ta được hệ: \(\left\{{}\begin{matrix}2x-y=0\\y-x=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=4\\y=8\end{matrix}\right.\)
Vậy số đó là 48
Gọi chữ số hàng đơn vị của số cần tìm là \(x\)(điều kiện: \(x\in Z;0\le x\le9\)).
\(\Rightarrow\)Chữ số hàng đơn vị của số cần tìm là \(9-x\).
\(\Rightarrow\)Số cần tìm là: \(\overline{\left(9-x\right)x}=10\left(9-x\right)+x=90-9x\).
Khi đảo 2 chữ số của số cần tìm, ta được số mới là: \(\overline{x\left(9-x\right)}=10x+9-x=9+9x\).
Vì khi thêm vào chữ số cần tìm \(63\) đơn vị thì ta thu được số mới cũng viết bằng hai chữ số đo nhưng theo thứ tự ngươc lại, nên ta có phương trình:
\(\left(90-9x\right)+63=9+9x\).
\(\Leftrightarrow144=18x\).
\(\Leftrightarrow x=8\)(thỏa mãn).
\(\Rightarrow\)Chữ số hàng chục của chữ số cần tìm là: \(9-8=1\).
\(\Rightarrow\)Chữ số cần tìm là \(18\).
Vậy chữ số cần tìm là: \(18\)
Gọi số tự nhiên có 2 chữ số là ab (0<=a,b<=9;a khác 0; a,b là số tự nhiên)
Vì tổng 2 chữ số là 9 => a+b= 9 (1)
Khi lấy số đó chia số ngược lại thì thương là 2 dư 18
\(\Rightarrow\overline{ab}=2\cdot\overline{ba}+18\\ \Leftrightarrow10a+b=20b+2a+18\Leftrightarrow8a-19b=18\left(2\right)\)
Từ (1),(2) ta có hệ phương trình
\(\left\{{}\begin{matrix}a+b=9\\8a-19b=18\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=9-a\\8a-19\left(9-a\right)=18\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=7\\b=2\end{matrix}\right.\left(t.m\right)\)
Vậy số phải tìm là 72
Bài 2:
Số thư nhất là (80+14)/2=47
Số thứ hai là 47-14=33
Bài 3:
Gọi số thứ nhât là x
=>Số thứ hai là 7-x
Theo đề, ta co hệ: \(\dfrac{1}{x}+\dfrac{1}{7-x}=\dfrac{7}{12}\)
=>\(\dfrac{7-x+x}{x\left(7-x\right)}=\dfrac{7}{12}\)
=>x(7-x)=12
=>x(x-7)=-12
=>x^2-7x+12=0
=>x=3 hoặc x=4
=>Hai số cần tìm là 3;4
Bài 2 :
Gọi \(x,y\) là 2 số đó
Theo đề, ta có hệ pt :
\(\left\{{}\begin{matrix}x+y=80\\x-y=14\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=47\\y=33\end{matrix}\right.\)
Vậy 2 số đó là 47 và 33
Bài 3 :
Gọi \(x,y\) là 2 số cần tìm
Theo đề, ta có hệ pt :
\(\left\{{}\begin{matrix}x+y=7\\x-y=\dfrac{7}{12}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{91}{24}\\y=\dfrac{77}{24}\end{matrix}\right.\)
Vậy 2 số đó là \(\dfrac{91}{24};\dfrac{77}{24}\)
Gọi sô cần tìm là \(\overline{ab}\)
Vì viết các chữ số theo thứ tự ngược lại ta được một số bằng 2/9 số ban đầu nên ta có : \(\overline{ba}=\frac{2}{9}\overline{ab}\)
Ta có hệ : \(\left\{{}\begin{matrix}a+b=9\\\overline{ba}=\frac{2}{9}\overline{ab}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+b=9\\10b+a=\frac{2}{9}\left(10a+b\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+b=9\\10b-\frac{2}{9}b=\frac{20}{9}a-a\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=9\\\frac{88}{9}b=\frac{11}{9}a\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+b=9\\a=8b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=8\\b=1\end{matrix}\right.\)
Vậy số cần tìm là 81
cho mình hỏi là 10b lấy kiểu j ạ