Cho hình bình hành ABCD có AD=2AB, Â= 60 độ. Gọi E,F lần lượt là trung...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2018

B A M E F D C 1 60 độ

a) - Vì ABCD là hình bình hành(gt)
\(\Rightarrow BC //AD\)và BC=AD
Mà \(E\in BC,F\in AD\)và \(BE=\frac{1}{2}BC,\text{AF}=\frac{1}{2}AD\)(gt)

Nên\(BE//\text{AF}\)và BE=AF
=> ABEF là hình bình hành (1)
Mặt khác AD=2AB(gt)
=>\(AB=\frac{AD}{2}\)

\(\text{AF}=\frac{AD}{2}\left(gt\right)\)

Nên AB=AF(2)
Từ (1) và (2) => ABEF là hình thoi
=> \(AE\perp BF\)
b) Ta có BC//FD(BC//AD,F thuộc AD)
=> BCDF là hình thang (3)
- Vì ABCD là hình bình hành(gt)
Nên \(\widehat{BAD}=\widehat{C}=60^o\)(4)
- Ta có : \(\widehat{B\text{AF}}+\widehat{ABE}=180^0\)(Trong cùng phía,BC//AD)
                          \(\widehat{ABE}=180^0-\widehat{B\text{AF}}\)

                              \(\widehat{ABE}=180^o-60^o=120^o\)

Mà ABEF là hình thoi

=> \(\widehat{B_1}=\widehat{\widehat{\frac{ABE}{2}}=\frac{120^o}{2}=60^o}\)(5)
Từ (4) và (5) => \(\widehat{C}=\widehat{B_1}\)(6)
Từ (3) và (6)
=> BCDF là hình thang cân
c) Vì ABCD là hình bình hành(gt)
Nên AB//CD và AB=CD
Mà M thuộc AB và AB=BM(M đối xứng với A qua B)
=> B là trung điểm của AB

Nên BM//CD và BM=CD

=> BMCD là hình bình hành (7)

- Xét \(\Delta ABF\)có ;
AB=AF(cmt)

=> \(\Delta ABF\)cân tại A
Mà \(\widehat{B\text{AF}}=60^o\)(gt)

Nên \(\Delta ABF\)đều

=> AB=BF=AF
- Xét \(\Delta ABD\)có:
BF là đường trung tuyến ứng với AD (FA=FD)
\(BF=\frac{1}{2}AD\)(BF=FA mà \(FA=\frac{1}{2}AD\))
Nên \(\Delta ABD\)vuông tại B
=> \(\widehat{MBD}=90^0\)(8)
Từ (7) và (8) =>BMCD là hình chữ nhật
Mà E là trung điểm của BC(gt)
Nên E là trung điểm của MD

Hay E,M,D thẳng hàng

6 tháng 11 2018

Câu hỏi của Yaden Yuki - Toán lớp 8 - Học toán với OnlineMath Em tham khảo bài làm ở link này nhé!

12 tháng 12 2020

a) Ta có: \(AF=\dfrac{AD}{2}\)(F là trung điểm của AD)

\(BE=\dfrac{BC}{2}\)(E là trung điểm của BC)

mà AD=BC(Hai cạnh đối trong hình bình hành ABCD)

nên AF=BE

Xét tứ giác AFEB có 

AF//BE(AD//BC, F∈AD, E∈BC)

AF=BE(cmt)

Do đó: AFEB là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Ta có: \(AD=2\cdot AB\)(gt)

mà \(AD=2\cdot AF\)(F là trung điểm của AD)

nên AB=AF

Hình bình hành AFEB có AB=AF(cmt)

nên AFEB là hình thoi(Dấu hiệu nhận biết hình thoi)

⇒Hai đường chéo AE và BF vuông góc với nhau tại trung điểm của mỗi đường(Định lí hình thoi)

hay AE⊥BF(đpcm)

b) Ta có: AFEB là hình thoi(cmt)

nên AF=FE=EB=AB và \(\widehat{A}=\widehat{FEB}\)(Số đo của các cạnh và các góc trong hình thoi AFEB)

hay \(\widehat{FEB}=60^0\)

Xét ΔFEB có FE=EB(cmt)

nen ΔFEB cân tại E(Định nghĩa tam giác cân)

Xét ΔFEB cân tại E có \(\widehat{FEB}=60^0\)(cmt)

nên ΔFEB đều(Dấu hiệu nhận biết tam giác cân)

\(\widehat{BFE}=60^0\)(Số đo của một góc trong ΔFEB đều)

Ta có: AB//FE(hai cạnh đối trong hình thoi ABEF)

nên \(\widehat{A}=\widehat{DFE}\)(hai góc đồng vị)

hay \(\widehat{DFE}=60^0\)

Ta có: tia FE nằm giữa hai tia FB,FD

nên \(\widehat{DFB}=\widehat{DFE}+\widehat{BFE}\)

\(\Leftrightarrow\widehat{DFB}=60^0+60^0=120^0\)(1)

Ta có: AD//BC(hai cạnh đối trong hình bình hành ABCD)

nên \(\widehat{A}+\widehat{D}=180^0\)(hai góc trong cùng phía bù nhau)

hay \(\widehat{D}=180^0-60^0=120^0\)(2)

Từ (1) và (2) suy ra \(\widehat{DFB}=\widehat{D}\)

Xét tứ giác BFDC có 

FD//BC(AD//BC, F∈AD)

nên BFDC là hình thang có hai đáy là FD và BC(Định nghĩa hình thang)

Hình thang BFDC có \(\widehat{DFB}=\widehat{D}\)(cmt)

nên BFDC là hình thang cân(Dấu hiệu nhận biết hình thang cân)

a: Xét tứ giác AFEB có 

AF//BE

AF=EB

Do đó: AFEB là hình bình hành

mà AF=AB

nên AFEB là hình thoi

=>AE\(\perp\)FB

c: Xét tứ giác BMCD có 

BM//CD

BM=CD

Do đó: BMCD là hình bình hành

d: Ta có: BMCD là hình bình hành

nên BC và MD cắt nhau tại trung điểm của mỗi đường

mà E là trung điểm của BC

nên E là trung điểm của MD

hay M,E,D thẳng hàng

28 tháng 10 2018

A F B C D E M 1 1 1 2

a, Ta có do: AD=2AB mà AD=2AF nên AF=AB

Mặt khác AF=BE(tự cm) và AB=EF nên AF=BE=AB=EF

suy ra AFEB là hình thoi suy ra \(AE\perp BF\)

b, ABCD là hình bình hành nên \(\widehat{A}=\widehat{C_1}=60^o\)(1)

Mà AF=AB nên \(\Delta AFB\)cân tại A có góc A =60 độ nên tam giác AFB đều suy ra \(\widehat{AFB}=60^o\)

mặt khác AD//BC \(\Rightarrow\widehat{AFB}=\widehat{FBE}=60^o\)(2)

Từ (1) và (2) suy ra FDCB là hình thang cân.

c, Ta có AB=BM=DC mà BM//DC nên BDCM là hình bình hành

lại có:

BF=AF mà AF=FD nên FD=BF suy ra \(\Delta FDB\)cân tại F \(\Rightarrow\widehat{D_1}=\widehat{B_1}=\frac{180^o-\widehat{BFD}}{2}=30^o\)

(đoạn này làm hơi tắt bạn tự tìm hiểu và triển khai nha)

Mà \(\widehat{D_1}+\widehat{D_2}=\widehat{ADC}=120^o\Rightarrow\widehat{D_2}=90^o\)

(đoạn này làm hơi tắt bạn tự tìm hiểu và triển khai nha)

Hình bình hành BDCM có góc D2=90 độ nên BDCM là hình chữ nhật