Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:a=b*\(\frac{m}{n}\)
Bài 2:b=a:\(\frac{3}{2}\)
Bài 3:cho hỏi tỉ số % hở
ta có sơ đồ:
STN: |----------|----------|----------|
ST2: |----------|--------|1|
1/3 của số thứ nhất là:
8 - 1 = 7 (đơn vị)
Số thứ nhất là:
7 x 3 = 21
Số thứ 2 là:
21 - 8 = 13
Đáp số: Số thứ nhất: 21
Số thứ hai: 13
Gọi hai số tự nhiên cần tìm là a và b
ta có:2/3a-1=b và a-b=8
Từ 2/3a-1=b=>2/3a=b+1
=>2/3.(b+8)=b+1
=>2/3b+16/3=b+1
=>2/3b-b=1-16/3
=>-1/3b=-13/3=>-b/3=-13/3=>-b=-13=>b=13
khi đó a-b=8=>a=b+8=13+8=21
Vậy.........
Bài 1:
a) Để x là số âm <=>x<0
<=> \(\frac{a-4}{7}< 0\Leftrightarrow a-4< 0\Leftrightarrow a< 4\)
b) Để x là số dương <=> x>0
<=> \(\frac{a-4}{7}>0\Leftrightarrow a-4>0\Leftrightarrow a>4\)
c) x k phải là số âm k phải là số dương <=>x=0
<=> \(\frac{a-4}{7}=0\Leftrightarrow a-4=0\Leftrightarrow a=4\)
Bài 1. Ta có: \(a\left(a+2\right)\left(a-1\right)^2\ge0\therefore\frac{1}{4a^2-2a+1}\ge\frac{1}{a^4+a^2+1}\)
Thiết lập tương tự 2 BĐT còn lại và cộng theo vế rồi dùng Vasc (https://olm.vn/hoi-dap/detail/255345443802.html)
Bài 5: Bất đẳng thức này đúng với mọi a, b, c là các số thực. Chứng minh:
Quy đồng và chú ý các mẫu thức đều không âm, ta cần chứng minh:
\(\frac{1}{2}\left(a^2+b^2+c^2-ab-bc-ca\right)\Sigma\left[\left(a^2+b^2\right)+2c^2\right]\left(a-b\right)^2\ge0\)
Đây là điều hiển nhiên.
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ta có:
\(A=\frac{1}{1+a^2+b^2}+\frac{1}{2ab}\ge\frac{4}{1+a^2+b^2+2ab}\)
\(=\frac{4}{1+\left(a+b\right)^2}=\frac{4}{1+1}=2\)
Dấu "=" xảy ra khi \(\begin{cases}a=b\\a+b=1\end{cases}\)\(\Rightarrow a=b=\frac{1}{2}\)
Vậy \(Min_A=2\) khi \(a=b=\frac{1}{2}\)
Câu 2 :
b) \(\frac{x}{3}=\frac{-2}{9}\)
=> x = \(\frac{-2}{9}.3\) = \(\frac{-2}{3}\)
c) \(0,5x-\frac{2}{3}x=\frac{7}{12}\)
=> \(\frac{1}{2}x-\frac{2}{3}x=\frac{7}{12}\)
=> \(-\frac{1}{6}\)x = \(\frac{7}{12}\)
=> x = \(\frac{7}{12}:\frac{-1}{6}\)
=> x =\(\frac{-7}{2}\)
Đề 1 câu 5 :
\(3B=3^2+3^3+3^4+...+3^{201}\)
\(\Rightarrow2B=3B-B=3^{201}-3\)
\(\Rightarrow2B+3=\left(3^{201}-3\right)+3=3^{201}\)
Do đó n = 201
Gọi a, b là hai số cần tìm. Ta có hệ phương trình:
\(\left\{ {\begin{array}{*{20}{c}}
{a + b = 54}\\
{\frac{a}{b} = \frac{1}{2}}
\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
{b = 2a}\\
{a+2a=3a = 54}
\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
{a = 18}\\
{b = 2a = 2.18 = 36}
\end{array}} \right.\)
1\(\frac{1}{2}\)=3/2
Ta có a/b=3/2
=>a*2=b*3
=>2a=3b(1)
Mà a-b=8
=>a=8+b
Thay a=8+b vào (1) ta có
2*(8+b)=3b
16+2b=3b
16=3b-2b
16=b
=>b=16
=>a=16+8
=>a=24
Giải:
đổi 1\(\frac{1}{2}\)=\(\frac{3}{2}\)
ta có sơ đồ:
số a:!----!----!----!
số b:!----!----!
hiệu số phần bằng nhau là:
3-2=1(phần)
số a là:
8:1*3=24
số b là:
24-8=16
đáp số:số a:24
số b:16