Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+5}{3}=\frac{x-1}{4}\)
\(\Rightarrow\left(x+5\right).4=\left(x-1\right).3\)
\(\Rightarrow4x+20=3x-3\)
\(\Rightarrow4x-3x=-3-20\Rightarrow x=-23\)
\(\frac{x+5}{3}=\frac{x-1}{4}\)
\(\Rightarrow\left(x+5\right)\cdot4=\left(x-1\right)\cdot3\)
\(4x+20=3x-3\)
\(4x-3x=-3-20\)
\(x=-23\)
Vậy \(x=-23\)
XIN LỖI MK K BT VẼ HÌNH TRÊN NÀY : |_ là vuông góc nhé bạn
Vì AB |_ CD tại O
=>AOD=AOC=DOB=BOC=90 độ
Mà OM là tia pg của góc BOC
=>COM =BOM=45 độ
Ta có góc AOM = AOC +COM
=>GÓC AOM= 90 độ +45 độ=135 độ
mk nhé!
Bạn ơi , bạn xem lại đề nhé! Mình làm thế này không biết có đúng đề không nữa?
Ta có \(a^2+c^2\ge0\) (gt) mà \(a^2\ge0 \forall a, c^2\ge0 \forall c\)=> \(a\ne0 , c\ne0\)=> \(b\ne0\)( vì \(ab=c^2\))
Với \(a,b,c \ne0\), \(ab=c^2\)=> \(\frac{a}{c}=\frac{c}{b}\)
=> \(\left(\frac{a}{c}\right)^2=\left(\frac{c}{b}\right)^2\)
=> \(\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a^2+c^2}{c^2+b^2}\) mà \(\frac{a}{c}=\frac{c}{b}\)
=> \(\frac{a^2+c^2}{c^2+b^2}=\frac{a}{c}.\frac{c}{b}=\frac{a}{b}\)
a) Ta có: \(f\left(x\right)=2x^2\left(x-1\right)-5\left(x+2\right)-2x\left(x-2\right)\)
\(=2x^3-2x^2-5x-10-2x^2+4x\)
\(=2x^3-4x^2-x-10\)
Bậc là 3
Ta có: \(g\left(x\right)=x^2\left(2x-3\right)-x\left(x+1\right)-\left(3x-2\right)\)
\(=2x^3-3x^2-x^2-x-3x+2\)
\(=2x^3-4x^2-4x+2\)
b) Ta có: h(x)=f(x)-g(x)
\(=2x^3-4x^2-x-10-2x^3+4x^2+4x-2\)
\(=3x-12\)
Đặt h(x)=0
nên 3x-12=0
hay x=4
\(\left|x+\frac{1}{x}\right|=3x-1\)
\(\orbr{\begin{cases}x+\frac{1}{x}=3x-1\\-x-\frac{1}{x}=3x-1\end{cases}}\)
\(\orbr{\begin{cases}x+\frac{1}{x}-3x+1=0\\-x-\frac{1}{x}-3x+1=0\end{cases}}\)
\(\orbr{\begin{cases}-2x+\frac{1}{x}+1=0\\-4x-\frac{1}{x}+1=0\end{cases}}\)
\(\orbr{\begin{cases}-2x^2+1+x=0\\-4x^2-1+x=0\end{cases}}\)
\(\orbr{\begin{cases}x=-\frac{1}{2};x=1\\x=\frac{1-\sqrt{15t}}{8}\end{cases}}\)
| x + \(\frac{1}{3}\)| = 3x - 1
\(\Rightarrow\)x + \(\frac{1}{3}\)= \(\pm\)( 3x - 1 )
TH1 : x + \(\frac{1}{3}\)= 3x - 1
\(\Rightarrow\)2x = \(\frac{4}{3}\)
\(\Rightarrow\)x = \(\frac{2}{3}\)
TH2 : x + \(\frac{1}{3}\)= - 3x + 1
\(\Rightarrow\)4x = \(\frac{2}{3}\)
\(\Rightarrow\)x = \(\frac{1}{6}\)