\(\frac{x^2-x}{x^2-x+1}-\frac{x^2-x+2}{x^2-x-2}=1\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2019

b, \(\frac{1}{x-1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\left(ĐKXĐ:x\ne\pm1;x\ne2\right)\)

\(\Leftrightarrow\)\(\frac{1}{x-1}+\frac{5}{2-x}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)

\(\Leftrightarrow\)\(\frac{\left(x+1\right)\left(2-x\right)+5\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(2-x\right)\left(x-1\right)}=\frac{15\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(2-x\right)}\)

Suy ra:

\(\Leftrightarrow\)(x+1)(2-x)+5(x-1)(x+1) = 15(x-1)

\(\Leftrightarrow\)2x-x2-x+2+5x2-5 = 15x-15

\(\Leftrightarrow\)2x-x2-x+5x2-15x = -15+5-2

\(\Leftrightarrow\)4x2-14x = -12

\(\Leftrightarrow4x^2-14x+12=0\)

\(\Leftrightarrow4x^2-8x-6x+12=0\)

\(\Leftrightarrow\)4x(x-2) - 6(x-2) = 0

\(\Leftrightarrow\left(x-2\right)\left(4x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\4x-6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(kotm\right)\\x=\frac{3}{2}\left(tm\right)\end{matrix}\right.\)

Vậy pt có nghiệm duy nhất x = \(\frac{3}{2}\)

26 tháng 2 2022

hic, mk chx học

a) ĐKXĐ: x≠0

Ta có: \(\frac{9}{x}+2=-6\)

\(\frac{9}{x}+2+6=0\)

\(\frac{9}{x}+8=0\)

\(\frac{9}{x}+\frac{8x}{x}=0\)

⇔9+8x=0

⇔8x=-9

hay \(x=-\frac{9}{8}\)

Vậy: \(x=-\frac{9}{8}\)

b) ĐKXĐ: x≠0;x≠-1;x≠-3

Ta có: \(\frac{7}{x+1}+\frac{-18x}{x\left(x^2+4x+3\right)}=\frac{-4}{x+3}\)

\(\frac{7}{x+1}+\frac{-18x}{x\left(x+1\right)\left(x+3\right)}-\frac{-4}{x+3}=0\)

\(\frac{7x\left(x+3\right)}{\left(x+1\right)\cdot x\cdot\left(x+3\right)}+\frac{-18x}{\left(x+1\right)\cdot x\cdot\left(x+3\right)}-\frac{-4x\left(x+1\right)}{\left(x+3\right)\cdot x\cdot\left(x+1\right)}=0\)

\(7x^2+21x-18x+4x\left(x+1\right)=0\)

\(\Leftrightarrow7x^2+21x-18x+4x^2+4x=0\)

\(11x^2+7x=0\)

\(\Leftrightarrow x\left(11x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\11x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\11x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=\frac{-7}{11}\end{matrix}\right.\)

Vậy: \(x=\frac{-7}{11}\)

c) ĐKXĐ: x≠1; x≠-3

Ta có: \(\frac{3x-1}{x-1}-1=\frac{2x+5}{x+3}+\frac{4}{x^2-2x+3}\)

\(\frac{3x-1}{x-1}-1-\frac{2x+5}{x+3}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)

\(\frac{\left(3x-1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\frac{\left(x-1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\frac{\left(2x+5\right)\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)

\(\left(3x-1\right)\left(x+3\right)-\left(x-1\right)\left(x+3\right)-\left(2x+5\right)\left(x-1\right)-4=0\)

\(\Leftrightarrow3x^2+9x-x-3-\left(x^2+3x-x-3\right)-\left(2x^2-2x+5x-5\right)-4=0\)

\(\Leftrightarrow3x^2+8x-3-\left(x^2+2x-3\right)-\left(2x^2+3x-5\right)-4=0\)

\(\Leftrightarrow3x^2+8x-3-x^2-2x+3-2x^2-3x+5-4=0\)

\(\Leftrightarrow3x+1=0\)

\(\Leftrightarrow3x=-1\)

hay \(x=\frac{-1}{3}\)

Vậy: \(x=\frac{-1}{3}\)