Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
?2.(trang 111)
a) Xét \(\Delta ABC\) có:
^A +^B + ^C= \(180^o\) ( định lí tổng ba góc của một tam giác)
\(\Rightarrow\) ^C = \(180^o\)- ^A - ^B (1)
Xét \(\Delta MND\) có:
^M + ^N + ^P = \(180^o\) ( định lí tổng ba góc cuả một tam giác)
\(\Rightarrow\) ^P = \(180^o\)- ^M - ^N (2)
Mà ^A = ^M ; ^B = ^N (3)
Từ (1);(2);(3) \(\Rightarrow\) ^C= ^P
Xét \(\Delta ABC\) và \(\Delta MNP\) ta có:
AB=MN (gt)
AC=MP (gt)
BC=NP (gt)
^A = ^M (gt)
^B = ^N (gt)
^C = ^P (cmt)
\(\Rightarrow\Delta ABC=\Delta MNP\)
b) Đỉnh tương ứng với đỉnh A là đỉnh N
Góc tương ứng với góc N là góc B
Cạnh tương ứng với cạnh AC là canh MP.
c) \(\Delta ACB=\Delta MPN\)
AC=MP
^B = ^N
ta có 2.16=32
4.8=32
\(\Rightarrow\)2.16=4.8
\(\dfrac{2}{4}=\dfrac{8}{16};\dfrac{2}{8}=\dfrac{4}{16};\dfrac{4}{2}=\dfrac{16}{8};\dfrac{8}{2}=\dfrac{16}{4}\)
ta có 2.32=64
4.16=64
\(\Rightarrow\)2.32=4.16
\(\dfrac{2}{4}=\dfrac{16}{32};\dfrac{2}{16}=\dfrac{4}{32};\dfrac{4}{2}=\dfrac{32}{16};\dfrac{16}{2}=\dfrac{32}{4}\)
A B C N M 1 2
trên tia đối của tia MA lấy N sao cho MN=MA
xét tam giác AMB và tam giác NMC có
AM=NM
BM=CM
góc M1 = góc M2 ( đối đỉnh )
do đó tam giác AMB = tam giác NMC ( c. g. c)
=> AB=NC (1)
=> góc BAM = góc MNC
Mà góc BAM = góc CAM ( p.g)
=> góc MNC= góc CAM
=> tam giác MNC cân tại C
=> AC=NC (2)
từ 1 và 2
=> AB=AC
=> tam giác ABC cân tại A
\(-\dfrac{628628}{942942}=-\dfrac{2.314314}{3.314314}=-\dfrac{2}{3}\)
Câu 4:
a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó: ΔBAE=ΔBHE
Suy ra: BA=BH và EA=EH
b: Xét ΔAEK vuông tại A và ΔHEC vuông tại H có
EA=EH
\(\widehat{AEK}=\widehat{HEC}\)
Do đó: ΔAEK=ΔHEC
Suy ra: AK=HC
Ta có: BA+AK=BK
BH+HC=BC
mà BA=BH
và AK=HC
nên BK=BC
hay ΔBKC cân tại B
c: \(AC=\sqrt{BC^2-AB^2}=8\left(cm\right)\)