\(\dfrac{1}{1001}+\dfrac{1}{1002}+\dfrac{1}{1003}+....+\dfra...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2018

\(\dfrac{x-1016}{1001}+\dfrac{x-13}{1002}+\dfrac{x+992}{1003}=\dfrac{x+995}{1004}+\dfrac{x-7}{1005}+1\)

<=>\(\dfrac{x-1016}{1001}-1+\dfrac{x-13}{1002}-2+\dfrac{x+992}{1003}-3=\dfrac{x+995}{1004}-3+\dfrac{x-7}{1005}-2\)

<=>\(\dfrac{x-2017}{1001}+\dfrac{x-2017}{1002}+\dfrac{x-2017}{1003}=\dfrac{x-2017}{1004}+\dfrac{x-2017}{1005}\)

<=>\(\left(x-2017\right)\left(\dfrac{1}{1001}+\dfrac{1}{1002}+\dfrac{1}{1003}-\dfrac{1}{1004}-\dfrac{1}{1005}\right)=0\)

vì 1/1001+1/1002+1/1003-1/1004-1/1005 khác 0 nên x-2017=0<=>x=2017

vậy..........

14 tháng 4 2017

@Ace Legona

19 tháng 7 2018

clmm gửi gì v

6 tháng 4 2017

đặt \(P=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2001}-\dfrac{1}{2002}\\ Q=\dfrac{1}{1002}+...+\dfrac{1}{2002}\)

ta có:

\(P=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2001}-\dfrac{1}{2002}\\ \Rightarrow P=\left(1+\dfrac{1}{3}+...+\dfrac{1}{2001}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2002}\right)\\ \Rightarrow P=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2002}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2002}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2002}\right)\)\(\Rightarrow P=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2002}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2002}\right)\\ \Rightarrow P=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2002}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1001}\right)\\ \Rightarrow P=\dfrac{1}{1002}+...+\dfrac{1}{2002}\\ \Rightarrow P=Q\)\(\Rightarrow1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2001}-\dfrac{1}{2002}=\dfrac{1}{1002}+...+\dfrac{1}{2002}\left(đpcm\right)\)

6 tháng 4 2017

thanh kiu bạn iu hiu

1 tháng 8 2017

1)

a) \(\frac{x}{6}\)\(\frac{7}{3}\)

\(\Rightarrow\)x.3=6.7

\(\Rightarrow\)x.3=42

\(\Rightarrow\)x   =42:3

\(\Rightarrow\)x   =14

b) làm tương tự như câu a

c) làm tương tự như câu

 d) làm tương tư như câu a nhưng hơi phúc tạp một chút là bn phải đổi ra từ hỗn số ra phân số hoặc số nguyên

e) tương tự câu d

f) làm tương tự như câu d

2)

a) 3x:\(\frac{27}{10}\)=\(\frac{1}{3}\)\(2\frac{1}{4}\)

3x: \(\frac{27}{10}\) = \(\frac{1}{3}\)\(\frac{9}{4}\)

3x: \(\frac{27}{10}\) = \(\frac{4}{27}\)

3x       = \(\frac{4}{27}\)\(\frac{27}{10}\)

3x       = \(\frac{2}{5}\)

 x        = \(\frac{2}{5}\):  3

x         = \(\frac{2}{15}\)

Các câu còn lại bn làm tương tự như câu a nha

3) 

Làm tương tự như bài 2 nha

 mik khuyên bn nếu bn giải bài thì bn nên đổi ra cùng một kiểu số thì tốt hơn như số số thập phân thì thập phân hết ấy

Cuối cùng chúc bn học giỏi

18 tháng 6 2018

Giải:

a) \(\dfrac{1}{3}x+\dfrac{1}{5}-\dfrac{1}{2}x=1\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{6}x=\dfrac{5}{4}\)

\(\Leftrightarrow\dfrac{1}{6}x=\dfrac{-21}{20}\)

\(\Leftrightarrow x=\dfrac{-63}{10}\)

Vậy ...

b) \(\dfrac{3}{2}\left(x+\dfrac{1}{2}\right)-\dfrac{1}{8}x=\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{3}{2}x+\dfrac{3}{4}-\dfrac{1}{8}x=\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{11}{8}x=\dfrac{-1}{2}\)

\(\Leftrightarrow x=\dfrac{-4}{11}\)

Vậy ...

Các câu sau làm tương tự câu b)

a: Gọi số nguyên cần tìm là x

Theo đề, ta có: \(\dfrac{1}{3}+\left(\dfrac{2}{4}-1\dfrac{2}{5}\right)< x< 2\dfrac{1}{7}+\left(\dfrac{-2}{5}-\dfrac{1}{4}\right)\)

\(\Leftrightarrow\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{7}{5}< x< \dfrac{15}{7}-\dfrac{2}{5}-\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{20}{60}+\dfrac{30}{60}-\dfrac{84}{60}< x< \dfrac{15\cdot20-2\cdot28-35}{140}\)

\(\Leftrightarrow-\dfrac{34}{60}< x< \dfrac{209}{140}\)

mà x là số nguyên

nên \(x\in\left\{0;1\right\}\)

b: Gọi số nguyên cần tìm là x

Theo đề, ta có: \(\dfrac{7}{3}+\dfrac{3}{4}-\dfrac{1}{5}>x>\dfrac{2}{3}-\dfrac{1}{4}+\dfrac{2}{7}\)

\(\Leftrightarrow\dfrac{7\cdot20+3\cdot15-12}{60}>x>\dfrac{56-21+2\cdot12}{84}\)

\(\Leftrightarrow\dfrac{173}{60}>x>\dfrac{59}{84}\)

mà x là số nguên

nên \(x\in\left\{2;1\right\}\)