K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2021

\(a,=\left(x+2-3x\right)\left(x+2+3x\right)=4\left(1-x\right)\left(2x+1\right)\\ b,=25-\left(x+y\right)^2=\left(5-x-y\right)\left(5+x+y\right)\)

14 tháng 8 2019

a)\(x^2y-x^3-9y+9y\)

\(=x^2\left(y-x\right)-9\left(y-x\right)\)

\(=\left(x^2-9\right)\left(y-x\right)\)

\(=\left(x+3\right)\left(x-3\right)\left(y-x\right)\)

\(b,9x^2-1=\left(3x+1\right)\left(3x-1\right)\)

\(c,\left(x-y\right)4-4=\left(x-y-1\right)4\)

14 tháng 8 2019

\(1,x^2y-x^3-9y+9x=x^2\left(y-x\right)-9\left(y-x\right).\)

\(\left(y-x\right)\left(x^2-9\right)=\left(y-x\right)\left(x-3\right)\left(x+3\right)\)

\(2,9x^2-1=\left(3x\right)^2-1^2=\left(3x+1\right)\left(3x-1\right)\)

\(3,\left(x-y\right)4-4=4\left(x-y-1\right)\)

\(4,\)\(9\left(x-y\right)^2=3^2\left(x-y\right)^2=\left(3x-3y\right)^2\)

\(5,3x^2-6ab+3b^2-12c^2???\)

\(6,x^2-25+y^2+2xy=\left(x+y\right)^2-25\)

\(=\left(x+y-5\right)\left(x+y+5\right)\)

12 tháng 9 2015

=> x + 2y = 0 hoặc x2 - 2xy + 4y2 = 0

còn lại thì e bó tay . canh 

12 tháng 9 2015

(x+2y)(x2-2xy+4y2)=0

<=>x3+(2y)3=0

<=>x3+8y3=0  (1)

(x-2y)(x2+2xy+4y2)=0

<=>x3-(2y)3=0

<=>x3-8y3=0  (2)

từ (1) và (2)=>x3+8y3-x3+8y3=0

<=>16y3=0

<=>y=0

thay y=0 vào (1) ta đc:

x3-0=0

<=>x3=0

<=>x=0

9 tháng 7 2018

a ) 

\(x^2y+x^2+xy+xy^2+xy+y^2\)

\(=\left(x^2y+xy^2\right)+\left(x^2+2xy+y^2\right)\)

\(=xy\left(x+y\right)+\left(x+y\right)^2\)

\(=\left(x+y\right)\left(xy+1\right)\)

b ) 

\(x^2+xy+x+xy+y+y^2\)

\(=\left(x^2+2xy+y^2\right)+\left(x+y\right)\)

\(=\left(x+y\right)^2+\left(x+y\right)\)

\(=\left(x+y\right)\left(x+y+1\right)\)

c ) 

\(x^2+y^2+z^2+2z\left(x+y\right)+2xy\)

\(=\left(x^2+2xy+y^2\right)+z^2+2z\left(x+y\right)\)

\(=\left(x+y\right)^2+z^2+2z\left(x+y\right)\)

\(=\left(x+y\right)\left(x+y+2z\right)+z^2\)

14 tháng 10 2020

\(=x^3+x^2-\left(4x+4\right)=x^2\left(x+1\right)-4\left(x+1\right)=\left(x^2-4\right)\left(x+1\right)\)
\(=\left(x-2\right)\left(x+1\right)\left(x+2\right)\)

\(x^4+x^3+x^2-1=x^3\left(x+1\right)+\left(x-1\right)\left(x+1\right)=\left(x+1\right)\left(x^3+x-1\right)\)

\(c,=\left(x+y\right)^2-2\left(x+y\right)+1=\left(x+y-1\right)^2\)

\(d,=x^2y^2-y^2-x^2+1=\left(x^2-1\right)\left(y^2-1\right)=\left(x-1\right)\left(y-1\right)\left(x+1\right)\left(y+1\right)\)

\(e,4x^2+4x-15=\left(4x^2+4x+1\right)-16=\left(2x+1\right)^2-4^2=\left(2x+5\right)\left(2x-3\right)\)

\(3x^2-7x+2=\left(3x^2-6x\right)-\left(x-2\right)=3x\left(x-2\right)-\left(x-2\right)=\left(3x-1\right)\left(x-2\right)\)

\(4x^2-5x+1=\left(4x^2-4x\right)-\left(x-1\right)=4x\left(x-1\right)-\left(x-1\right)=\left(4x-1\right)\left(x-1\right)\)

14 tháng 10 2020

Phân tích à :v

a) x3 + x2 - 4x - 4 = x2( x + 1 ) - 4( x + 1 ) = ( x + 1 )( x2 - 4 ) = ( x + 1 )( x - 2 )( x + 2 )

b) x4 + x3 + x2 - 1 = x3( x + 1 ) + ( x - 1 )( x + 1 ) = ( x + 1 )( x3 + x - 1 )

c) x2 + 2xy + y2 - 2x - 2y + 1 = ( x2 + 2xy + y2 ) - ( 2x + 2y ) + 1 = ( x + y )2 - 2( x + y ) + 12 = ( x + y - 1 )2

d) x2y2 + 1 - x2 - y2 = ( x2y2 - x2 ) - ( y2 - 1 ) = x2( y2 - 1 ) - ( y2 - 1 ) = ( y2 - 1 )( x2 - 1 ) = ( y - 1 )( y + 1 )( x - 1 )( x + 1 )

e) 4x2 + 4x - 15 = ( 4x2 + 4x + 1 ) - 16 = ( 2x + 1 )2 - 42 = ( 2x + 1 - 4 )( 2x + 1 + 4 ) = ( 2x - 3 )( 2x + 5 )

g) 3x2 - 7x + 2 = 3x2 - 6x - x + 2 = 3x( x - 2 ) - ( x - 2 ) = ( x - 2 )( 3x - 1 )

h) 4x2 - 5x + 1 = 4x2 - 4x - x + 1 = 4x( x - 1 ) - ( x - 1 ) = ( x - 1 )( 4x - 1 )