Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình không chắc chắn về lời giải này đâu bạn nhé!
Hình bạn tự vẽ nha!
Ta có: AM là trung tuyến của \(\Delta ABC\) => M là trung điểm BC => BM = CM
\(\Delta ABC\) cân tại A (gt) và AM là trung tuyến \(\Delta ABC\)
=> \(\Delta ABM\) vuông tại M
=> AB2 = AM2 + BM2 ( đ/lí Pytago )
202 = AM2 + 162
AM2 = 202 - 162
=> AM2 = 122
=> AM = 12 cm
=> AG = \(\frac{2}{3}AM\) = \(\frac{2}{3}.12=8\left(cm\right)\)
Vậy AG = 8 cm
a)xét tam giác AHB và tam giác AHC có
AB=AC
AH là cạnh chung
goc B= góc C
=>tam giác AHB = tam giác AHC (c.g.c)
=>BH=CH
b) theo cau a =>BH=CH=1/2BC=3cm
Áp dụng định lí py-ta-go vào tam giác ABH co
AH2 =AB2-BH2=52-32=25-9=16
=>AH=4
ai chơi free fire không ních mình là tuan6789vn các bạn kết bạn với mình nha
a) Vì trong tam giác cân, đường vuông góc cũng là đường trung tuyến, đường phân giác, đường trung trực nên HB = HC
b) Xét \(\Delta\) vuông AHB có HB = HC = 1/2.BC = 1/2.6 = 3(cm)
\(\Rightarrow\) HB = 3(cm)
Áp dụng định lí Pitago ta có: AB^2 = AH^2 + HB^2
\(\Rightarrow\) AH^2 = AB^2 - HB^2 = 5^2 - 3^2 = 16
\(\Rightarrow\) AH = 4(cm)
A B C 5 H 6 F G D a)
theo giả thiết ta có :
\(\Delta ABC\) cân tại A
theo định lý : trong 1 tam giác cân đường cao đồng thời là đường trung tuyến .
\(\Rightarrow AH\) là đường trung tuyến của tma giác ABC
\(\Rightarrow BH=HC\)
b)
theo a) ta có :
\(BH=HC=\frac{BC}{2}=\frac{6}{2}=3\) ( cm )
xét \(\Delta AHB\perp\) tại H
Ap dụng định lý Py-to-go ta có :
\(AB^2=AH^2+BH^2\)
\(5^2=AH^2+3^2\)
\(\Rightarrow AH^2=5^2-3^2\)
\(=25-9\)
\(=16\)
\(\Rightarrow AH=\sqrt{16}=4\) (cm )