Đường thẳng dm :

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
31 tháng 10 2020

Gọi \(M\left(x_0;y_0\right)\) là điểm cố định mà họ đường thẳng luôn đi qua

\(\Rightarrow\) Với mọi m ta luôn có:

\(\left(m-2\right)x_0+my_0=-6\)

\(\Leftrightarrow m\left(x_0+y_0\right)+\left(-2x_0+6\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0+y_0=0\\-2x_0+6=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_0=3\\y_0=-3\end{matrix}\right.\)

Đáp án D

NV
31 tháng 10 2020

\(y\left(-x\right)=-x^3+3\left(m^2-1\right)x^2-3x\)

Hàm lẻ khi và chỉ khi \(y\left(x\right)=-y\left(-x\right)\) với mọi x

\(\Leftrightarrow x^3+3\left(m^2-1\right)x^2+3x=x^3-3\left(m^2-1\right)x+3x\) ; \(\forall x\)

\(\Leftrightarrow6\left(m^2-1\right)x^2=0\) ;\(\forall x\)

\(\Leftrightarrow m^2-1=0\Leftrightarrow m=\pm1\)

Câu 1 1. Cho parabol (P): y=\(x^2-2\left(m-1\right)x-m^3+\left(m+1\right)^2\). Giả sử (P) cắt Ox tại 2 điểm có hoành độ x1 , x2 thỏa mãn điều kiện x1+x2 \(\le\) 4. Tìm GTLN và GTNN của biểu thức sau: P = \(x^{_13}+x^{_23}+x_1x_2\left(3x_1+3x_2+8\right)\) 2. Giải phương trình: \(\sqrt{x^4-x^2+4}+\sqrt{x^4+20x^2+4}=7x\) Câu 2: 1. Cho parabol (P): \(y=x^2-2mx+m^2-2m+4\). Tìm tất cả các giá trị thực của m để (P) cắt Ox tại 2 điểm...
Đọc tiếp

Câu 1

1. Cho parabol (P): y=\(x^2-2\left(m-1\right)x-m^3+\left(m+1\right)^2\). Giả sử (P) cắt Ox tại 2 điểm có hoành độ x1 , x2 thỏa mãn điều kiện x1+x2 \(\le\) 4. Tìm GTLN và GTNN của biểu thức sau: P = \(x^{_13}+x^{_23}+x_1x_2\left(3x_1+3x_2+8\right)\)

2. Giải phương trình: \(\sqrt{x^4-x^2+4}+\sqrt{x^4+20x^2+4}=7x\)

Câu 2:

1. Cho parabol (P): \(y=x^2-2mx+m^2-2m+4\). Tìm tất cả các giá trị thực của m để (P) cắt Ox tại 2 điểm có hoành độ không âm x1, x2. Tính theo m giá trị của biểu thức \(P=\sqrt{x_1}+\sqrt{x_2}\) và tìm giá trị nhỏ nhất của P.

2. Giải bất phương trình: \(\frac{3-2\sqrt{x^2+3x+2}}{1-2\sqrt{x^2-x+1}}>1\)

Câu 3:

1. Cho hàm số \(y=f\left(x\right)=mx^2-2\left(m-1\right)x+m-2\). Tìm m để trên đồ thị của \(f\left(x\right)\)có 2 điểm \(A\left(x_A;y_A\right),B\left(x_B,y_B\right)\)thỏa mãn: \(2x_A-y_A-3=0,2x_B-y_B-3=0\)\(AB=\sqrt{5}\)

2. Giải phương trình: \(x\sqrt{x}-1=\left(\sqrt{x}-1\right).\sqrt{2x^2-3x+2}\)

Câu 4:

1. Cho parabol (P): \(y=x^2-\left(m-1\right)x+\left(2m^2-8m+6\right)\). Giả sử (P) cắt Ox tại 2 điểm có hoành độ \(x_1,x_2\). Tìm GTLN và GTNN của biểu thức \(P=\left|x_1x_2-2\left(x_1+x_2\right)\right|\)

2. Giải bất phương trình: \(\left(2x-5-\sqrt{x^2-x-25}\right)\sqrt{x^2-5x+6}\le0\)

Câu 5:

1. Cho parabol (P): \(y=-x^2\) và đường thẳng d đi qua điểm I (0; -1). và có hệ số góc là k. Gọi A và B là các giao điểm của (P) và d. Giả sử A, B lần lượt có hoành độ là \(x_1,x_2\)

a. Tìm k để trung điểm của đoạn AB nằm trên trục tung.

b. Tìm GTNN của biểu thức: \(P=\left|x^3_1-x^3_2\right|\)

2. Giải phương trình: \(1+\left(6x+2\right)\sqrt{2x^2-1}=2\left(5x^2+4x\right)\)

0
10 tháng 4 2017

a)

y(1) =a-4+c=\(-2\)\(\Rightarrow\) a+c=2

y(2)=4a-8+c=3 \(\Rightarrow\)4a+c=3

Trừ cho nhau\(\Rightarrow\)3a=1 \(\Rightarrow\)a=\(\dfrac{1}{3}\)\(\Rightarrow\)  \(c=2-\dfrac{1}{3}=\dfrac{5}{3}\).

Vậy: \(y=\dfrac{1}{3}x^2-4x+\dfrac{5}{3}\).

b)

I(-2;1)\(\Rightarrow\dfrac{4}{2a}=-2\)\(\Leftrightarrow a=-1\).

y(-2) \(=-4+8+c=1\)\(\Rightarrow\) \(c=-3\)

Vậy: \(y=-x^2-4x-3\).

c)\(\dfrac{4}{2a}=-3\)\(\Leftrightarrow a=-\dfrac{2}{3}\)
\(y\left(-2\right)=-\dfrac{2}{3}.4+8+c=1\)\(\Leftrightarrow c=-\dfrac{13}{3}\)
Vậy: \(y=-\dfrac{2}{3}x^3-4x-\dfrac{13}{3}\).

1: Vì ABCD là hình bình hành

nên vecto AB=vecto DC

=>\(\left\{{}\begin{matrix}0-x_D=1-\left(-1\right)=2\\4-y_D=-3-1=-4\end{matrix}\right.\Leftrightarrow D\left(-2;8\right)\)

2: Vì ABCD là hình bình hành

nên vecto AB=vecto DC

\(\Leftrightarrow\left\{{}\begin{matrix}2-x_D=0-2=-2\\1-y_D=0-\left(-7\right)=7\end{matrix}\right.\Leftrightarrow D\left(4;-6\right)\)

 

 

Bài 2: 

Tọa độ giao điểm của Δ1 và Δ2 là:

\(\left\{{}\begin{matrix}2x+y=4\\5x-2y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{9}\\y=\dfrac{26}{9}\end{matrix}\right.\)

Thay x=5/9 và y=26/9 vào Δ3, ta được:

\(\dfrac{5}{9}m+\dfrac{26}{3}-2=0\)

=>5/9m=-20/3

hay m=-12

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

30 tháng 3 2017

a. phương trình tham số d có dạng : \(\left\{{}\begin{matrix}x=2+3t\\y=1+4t\end{matrix}\right.\)

b. phương trình tham số d có dạng: \(\left\{{}\begin{matrix}x=-2+5t\\y=3+t\end{matrix}\right.\)