Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 A=xyz+xz-zy-z+xy+x-y-1
thay các gtri x=-9, y=-21 và z=-31 vào là đc
=> A=-7680
Bài 2:a) n³ + 3n² + 2n = n²(n + 1) + 2n(n + 1) = n(n + 1)(n + 2)
số chia hết cho 6 là số chia hết cho 2 và 3
mà (n + 1) chia hết cho 2 và 3 với mọi số nguyên n
(n + 2) chia hết cho 2 và 3 với mọi số nguyên n
=>n³ + 3n² + 2n luôn chia hết cho 6 với mọi số nguyên n
b) 49n+77n-29n-1
=\(49^n-1+77^n-29^n\)
=\(\left(49-1\right)\left(49^{n-1}+49^{n-2}+...+49+1\right)+\left(77-29\right)\left(79^{n-1}+..+29^n\right)\)
=48(\(49^{n-1}+...+1+77^{n-1}+...+29^{n-1}\))
=> tích trên chia hết 48
c) 35x-14y+29-1=7(5x-2y)+7.73
=7(5x-2y+73) tích trên chia hết cho 7
=. ĐPCM
Ta coˊ :xy+x+1x+yz+y+1y+xz+z+1z
=���+�+1+�����+��+�+����2��+���+��=xy+x+1x+xyz+xy+xxy+x2yz+xyz+xyxyz
=���+�+1+����+�+1+1��+�+1(Vıˋ ���=1)=xy+x+1x+xy+x+1xy+xy+x+11(Vıˋ xyz=1)
=�+��+1��+�+1=xy+x+1x+xy+1
=1=1
Biến đổi A ta được :
\(A=x\left(x+11\right)\left(x+3\right)\left(x+8\right)+144\)
\(=\left(x^2+11x\right)\left(x^2+11x+24\right)+144\)
\(=\left(x^2+11x\right)^2+24\left(x^2+11x\right)+144\)
\(=\left(x^2+11x\right)^2+2.12.\left(x^2+11x\right)+12^2\)
\(=\left(x^2+11x+12\right)^2\) là một số chính phương \(\forall x\in Z\)
Vậy A là một số chính phương (đpcm)
a) Ta có:
\(n^2\left(n+1\right)-n\left(n+1\right)=n\left(n-1\right)\left(n+1\right)\)
Vì trong 3 số nguyên liên tiếp, có ít nhất 1 số chia hết cho 3 và 1 số chia hết cho 2 nên tích n(n-1)(n+1) chia hết cho 6 hay \(n^2\left(n+1\right)-n\left(n+1\right)\) chia hết cho 6(đpcm).
b) Ta có:
\(20^{n+1}-20^n=20^n\cdot19\)
Vì \(20^n\) là số nguyên nên \(20^n\cdot19⋮19\). Hay \(20^{n+1}-20^n⋮19\left(đpcm\right)\)
Ngọc Anh
Ta có :
n (2n - 3 ) - 2n ( n + 1 )
= 2n2 - 3n - 22 - 2n
= -5n luôn chia hết cho 5 với mọi n thuộc Z
Vậy n (2n - 3) - 2n (n + 1 ) luôn chia hết cho 5 với mọi số nguyên n
Ta có:
n(2n-3)-2n(n+1)
=2n2-3n-22-2n
=-5n luôn chia hết cho 5 với mọi n thuộc Z
Vậy n(2n-3)-2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
Gọi a là đại diện số lẻ.Có m=2a vì m là số chẵn
=>m^3 +20m= (2a)^3+20*2a=8a^3+40a
Xét 8a^3+40a
1-8a^3+40a
=8a^3 -2a+42a
=(2a+1)(2a-1)2a+42a
(2a+1)(2a-1)2a chia hết cho 3(vì là tích 3 số nguyên liên tiếp)(1)
42a chia hết cho 3(2)
Từ (1)(2)=>(2a+1)(2a-1)2a+42a chia hết cho 3
=>8a^3+40a chia hết cho 3(3)
2-8a^3 + 40a
=8*(a^3+5)
=> 8a^3 + 40a chia hết cho 8(4)
Có a là số lẻ suy ra a^3 là số lẻ,suy ra a^3+5 là tổng 2 số lẻ nên là số chẵn
=>a^3+5 chia hết cho 2=>8a^3 + 40a chia hết cho 2(5)
Từ (3)(4)(5)=>8a^3+40a chia hết cho 48
=>m^3 +20m chia hết cho 48 với m là số chẵn
đúng nhé