Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nha
a) Xét đường tròn đường kính MC
Ta có góc MDC=90 độ (góc nội tiếp chắn nửa dt)
Hay góc BDC = 90 độ
Xét tứ giác BADC có
Góc BAC =90 ĐỘ (GT)
Góc BDC =90 độ (cmt)
Mà hai đỉnh của góc này ở vị trí kề nhau do đó tứ giác BADC nt đường tròn ĐK BC
tâm O của dt là trung điểm BC
b)Xét dt đk BC có
Góc ADB=GÓC ACB (hai góc nt cùng chắn cung AB)(1)
Xét đường dt đường kính MC có góc MDN= GÓC MCN (hai góc nt cùng chắn cung MN)
hay Góc BMN = GÓC ABC (2)
Từ (1) (2) suy ra Góc ADB = Góc BDN (= góc ABC)
=> BD là phần giác góc ADN (đpcm)
c)Xét tam giác ABC có
AM=MC(GT)
OB=OC (=BÁN KÍNH CỦA DT NGOẠI TIẾP TỨ GIÁC BADC)
=> OM lad đtb của tam giác ABC
Suy ra OM//AB (t/c Đtb)
Do đó Góc OMC = 90 độ
Suy ra OM là tt của dt dk MC
d)Xét dt dk MC có
Góc MNC = 90 dộ (góc nt chắn nửa dt)
Hay góc PNC =90 độ
Xét Tam giác BPC CÓ
BD vuông góc PC ( góc BDC = 90) (cmt)
AC vuông góc với PB (góc ABC =90)(GT)
Mà hai đường thẳng này cắt nhau tại M do đó M là trực tâm của tam giắc BPC
Mặc khác PN vuông góc BC (Góc BNC = 90 ĐỘ) (cmt)
Do đó PN sẽ đi qua M => Ba điểm P,N,C thẳng hàng
--------------------------------------------------Hết------------------------------------------
Bài làm còn nhiều thiếu xót đặc biệt là cach trình bày mặt dù tớ hiểu mong các góp ý kiến đẻ mình hoàn thiện hơn
a
Đường tròn (O)(O), đường kính AHAH có \(\widehat{AMH}\)=90∘
⇒HM⊥ABAMH^=90∘⇒HM⊥AB.
ΔAHBΔAHB vuông tại HH có HM⊥AB
⇒AH2=AB.AMHM⊥AB⇒AH2=AB.AM.
Chứng minh tương tự AH2=AC.ANAH2=AC.AN.
\(\Rightarrow\) AB.AM=AC.ANAB.AM=AC.AN.
B
Theo câu a ta có AB.AM=AC.AN
⇒AMAC=ANABAB.AM=AC.AN⇒AMAC=ANAB.
Tam giác AMNAMN và tam giác ACBACB có \(\widehat{MAN}\)MAN^ chung và AMAC=ANABAMAC=ANAB.
⇒ΔAMN∼ΔACB⇒ΔAMN∼ΔACB (c.g.c).
⇒\(\widehat{AMN}\)=\(\widehat{ACB}\)
c.
Tam giác ABCABC vuông tại AA có II là trung điểm của BC
⇒IA=IB=ICBC⇒IA=IB=IC.
⇒ΔIAC⇒ΔIAC cân tại I
⇒ \(\widehat{IAC}\)= \(\widehat{ICA}\)
Theo câu b ta có \(\widehat{AMN}\)= \(\widehat{ACB}\)
⇒ \(\widehat{IAC}\)= \(\widehat{AMN}\)
Mà \(\widehat{BAD}\)\(+\widehat{IAC}\)=90∘
⇒\(\widehat{BAD}\)+ \(\widehat{AMN}\)
=90∘
\(\Rightarrow\widehat{ADM}\)
=90∘BAD^+IAC^=90∘⇒BAD^+AMN^=90∘⇒ADM^=90∘.
Ta chứng minh ΔABCΔABC vuông tại AA có AH⊥BC
⇒AH2=BH.CHAH⊥BC⇒AH2=BH.CH.
Mà BC=BH+CH
⇒1AD=BH+CHBH.CH
⇒1AD=1HB+1HC.
\(\Rightarrow\) BMNCBMNC là tứ giác nội tiếp.
A C B H O D E M N
a) Do D, E thuộc đường tròn đường kính DE nên \(\widehat{DAE}=\widehat{DHE}=90^o\)
Xét tứ giác ADHE có 3 góc vuông nên nó là hình chữ nhật.
Do ADHE là hình chữ nhật nên hai đường chéo DE và AH cắt nhau tại trung điểm mỗi đường. Mà O là trung điểm AH nên O là trung điểm DE.
Vậy D, O, E thẳng hàng.
b) Do AH vuông góc BC nên BC cũng là tiếp tuyến tại H của đường tròn (O)
Áp dụng tính chất hai tiếp tuyến cắt nhau, ta có : DM = MH.
Xét tam giác vuông ADH có DM = MH nên DM = MH = MB hay M là trung điểm BH.
Tương tự N là trung điểm HC.
c) Dễ thấy MDEN là hình thang vuông.
Vậy thì \(S_{MDEN}=\frac{\left(MD+EN\right).DE}{2}=\frac{\left(MH+HN\right).AH}{2}\)
\(=\frac{MN.AH}{2}=\frac{\frac{1}{2}BC.AH}{2}=\frac{1}{4}BC.AH=\frac{1}{4}AB.AC\)
\(=\frac{1}{4}.9.8=18\left(cm^2\right)\)
xl ~ mk k bt lm
mà mk tìm đc https://lazi.vn/edu/exercise/cho-duong-tron-tam-o-tu-diem-a-o-ngoai-duong-tron-ve-2-tiep-tuyen-ab-va-ac-b-va-c-la-cac-tiep-diem-oa-cat-bc-tai-e vào thử đi nha
giải cho em với mọi người