Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow-m^2+m+2mx-2=x^2-1\)
\(\Leftrightarrow x^2-1+m^2-m-2mx+2=0\)
\(\Leftrightarrow x^2-2mx+m^2-m+1=0\)
\(\text{Δ}=\left(-2m\right)^2-4\left(m^2-m+1\right)\)
=4m-4
Để phương trình có hai nghiệm phân biệt thì 4m-4>0
hay m>1
Để phương trình có nghiệm kép thì 4m-4=0
hay m=1
Để phương trình vô nghiệm thì 4m-4<0
hay m<1
+/ neu a khác 0 thi phuong trình có một nghiệm duy nhất x=-b/a
+/ nếu a=0 va b khác 0 thi phương trình vô nghiệm
a=0 va b=0 thi phuong trình có vô sô nghiệm
VD: giai và biẹn luận phuong trình m^2(x-1)+m=x(3m-2) (1) (với m la tham số và x là ẩn)
ta có phuong trinh(1) <=> m^2x-m^2+m-3mx+2x=0
<=> x(m^2-3m+2)-m^2+m=0 (2)
Nếu m^2-3m+2 khác 0 <=> m khác 2 và m khác 1=> phuong trình co nghiệm duy nhất
x=m-m^2/m^2-3m+2 <=> x=m/m-2
Nếu m^2-3m+2=0 <=> m=2 hoăcm=1
vói m=2 thi phuong trình (2) trở thành 0x-2=0 => phương trình dã cho vô nghiệm
với m=1 thi phwơng trình (2) trở thành 0x =0 => phương trình da cho có vô số nghiệm
A. \(x^2-2mx+m^2-2m+1=0\)
Ta có: Δ = \(b^2-4ac\)
= \(\left(-2m\right)^2-4.\left(m^2-2m+1\right)\)
= \(4m^2-4m^2+8m-4\)
= 8m - 4
+Nếu Δ > 0
⇔ 8m - 4 > 0
⇔ m > \(\dfrac{1}{2}\)
Phương trình có hai nghiệm phân biệt:
\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{2m+\sqrt{8m-4}}{2}=m+\sqrt{2m-1}\)
\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{2m-\sqrt{8m-4}}{2}=m-\sqrt{2m-1}\)
+Nếu Δ =0
⇔ 8m - 4 = 0
⇔ m = \(\dfrac{1}{2}\)
phương trình có nghiệm kép:
\(x_1=x_2=\dfrac{-b}{2a}=\dfrac{2m}{2}=m\) = \(\dfrac{1}{2}\)
+Nếu Δ < 0
⇔ 8m - 4 < 0
⇔ m< \(\dfrac{1}{2}\)
Phương trình vô nghiệm
B. \(x^2+\left(m-1\right)x-2m^2+m=0\)
Ta có: Δ = \(b^2-4ac\)
= \(\left(m-1\right)^2-4\left(-2m^2+m\right)\)
= \(m^2-2m+1+8m^2-4m\)
= \(9m^2-6m+1\)
+Nếu Δ > 0
⇔ \(9m^2-6m+1\) > 0
⇔ m ≠ \(\dfrac{1}{3}\)
Phương trình có hai nghiệm phân biệt:
\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-m+1+\sqrt{9m^2-6m+1}}{2}\)
\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-m+1-\sqrt{9m^2-6m+1}}{2}\)
+Nếu Δ = 0
⇔ \(9m^2-6m+1=0\)
⇔ m = \(\dfrac{1}{3}\)
Phương trình có nghiệm kép:
\(x_1=x_2=\dfrac{-b}{2a}=\dfrac{-\left(m-1\right)}{2}=\dfrac{-\left(\dfrac{1}{3}-1\right)}{2}=\dfrac{1}{3}\)
+Nếu Δ < 0
⇔ \(9m^2-6m+1< 0\)
⇔ m ∈ ∅
Bài 1:
\(\Leftrightarrow x\left(m^2-m-2\right)=m^2-1\)
\(\Leftrightarrow x\left(m-2\right)\left(m+1\right)=\left(m-1\right)\left(m+1\right)\)
Để phương trình vô nghiệm thì m-2=0
hay m=2
Để phương trình có nghiệm duy nhất thì (m-2)(m+1)<>0
hay \(m\notin\left\{2;-1\right\}\)
Để phương trình có vô số nghiệm thì m+1=0
hay m=-1
Trường hợp 1: m=0
=>Phương trình sẽ là -3=0(vô lý)
Trường hợp 2: m<>0
\(\Delta=\left(-2m\right)^2-4\cdot m^2\cdot\left(-3\right)=4m^2+12m^2=16m^2>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
Vậy Phương trình có hai nghiệm hai nghiệm phân biệt khi m<>0
Bài 1: Giải và biện luận các phương trình sau theo tham số m a) 2mx + 3 = m - x b) m(x - 2) = 3x + 1
b: Để phương trình vô nghiệm thì x-2=0
hay x=2
Để phương trình có nghiệm thì x-2<>0
hay x<>2
thấy x bật nhất thì dùng biện luận theo kiểu bật nhất
thấy x bật 2 thì dùng denta
a: =>x(m-2)(m+2)=-m+2
Để phương trình có nghiệm duy nhất thì (m-2)(m+2)<>0
=>m<>2; m<>-2
Đểphương trình vô nghiệm thì m+2=0
=>m=-2
Để phương trình có vô số nghiệm thì m-2=0
=>m=2
b: \(\Leftrightarrow x\left(m^2-16\right)=4m\)
Để phương trình có nghiệm duy nhất thì m^2-16<>0
hay \(m\notin\left\{4;-4\right\}\)
Để phương trình vô nghiệm thì m^2-16=0
=>m=4 hoặc m=-4
c: TH1: m=3
Pt sẽ là 4x-2=0
=>x=1/2
TH2: m<>3
\(\text{Δ}=4^2-4\cdot\left(-2\right)\cdot\left(m-3\right)\)
=16+8(m-3)
=8m-24+16=8m-8
Để phương trình vô nghiệm thì 8m-8<0
=>m<1
Để phương trình có nghiệm duy nhất thì 8m-8=0
=>m=1
Để phương trình có hai nghiệm phân biệt thì 8m-8>0
=>m>1
d: \(\text{Δ}=\left(-5\right)^2-4\left(2m-1\right)\)
=25-8m+4
=-8m+29
Để phương trình vô nghiệm thì -8m+29<0
=>-8m<-29
=>m>29/8
Để phương trình có nghiệm duy nhất thì -8m+29=0
=>m=29/8
Để phương trình có hai nghiệm phân biệt thì -8m+29>0
=>m<29/8
Lời giải:
\(m^2(x-1)=mx-1\)
\(\Leftrightarrow m^2x-m^2=mx-1\)
\(\Leftrightarrow x(m^2-m)=m^2-1\)
\(\Leftrightarrow xm(m-1)=(m-1)(m+1)\)
+) Nếu $m=1$ thì $x.0=0$: PT có vô số nghiệm \(x\in\mathbb{R}\)
+) Nếu $m=0$ thì $x.0=-1$: PT vô nghiệm
+) Nếu $m\neq 1; m\neq 0$ thì PT có nghiệm duy nhất \(x=\frac{(m-1)(m+1)}{m(m-1)}=\frac{m+1}{m}\)