Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge m\left(1\right)\\\left(3x+2m\right)^2=\left(x-m\right)^2\left(2\right)\end{matrix}\right.\)
(2)\(\Leftrightarrow9x^2+12xm+4m^2=x^2-2mx+m^2\)
\(\Leftrightarrow8x^2+14mx+3m^2=0\)
\(\Delta'_x=49m^2-24m^2=25m^2\ge0\forall m\) => (2) luôn có nghiệm với mợi m
\(x=\dfrac{5\left|m\right|-7m}{8}\) (3)
so sánh (3) với (1)
\(\dfrac{5\left|m\right|-7m}{8}\ge m\Leftrightarrow\left|m\right|\ge3m\)(4)
m <0 hiển nhiên đúng
xét khi m\(\ge\)0
\(\left(4\right)\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\m^2\ge9m^2\end{matrix}\right.\)\(\Rightarrow m\le0\)\(\Leftrightarrow m=0\)
Biện luận
(I)với m <0 có hai nghiệm
\(\left\{{}\begin{matrix}x_1=\dfrac{-3m}{2}\\x_2=\dfrac{-m}{4}\end{matrix}\right.\)
(II) với m= 0 có nghiệm kép x=0
(III) m>0 vô nghiệm
b) \(\left|2x+m\right|=\left|x-2m+2\right|\Leftrightarrow\left[{}\begin{matrix}2x+m=x-2m+2\left(1\right)\\2x+m=-\left(x-2m+2\right)\left(2\right)\end{matrix}\right.\)
Xét (1): \(2x+m=x-2m+2\Leftrightarrow x=-3m+2\).
Xét (2): \(2x+m=-\left(x-2m+2\right)\Leftrightarrow x=\dfrac{m-2}{3}\)
Biện luận:
Với mọi m phương trình đều có hai nghiệm:
\(x=-3m+2;x=\dfrac{m-2}{3}\).