Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)m(2x-m)\(\ge\)2(x-m)+1
<=>2mx-m2-2x+2m-1\(\ge\)0
<=>2(m-1)x-m2+2m-1\(\ge\)0
*)m=1 BPT trở thành
0.x-1+2-1\(\ge\)0
<=>0\(\ge\)0(đúng)
*)m khác 1
=>2(m-1)x-(m-1)2\(\ge\)0
<=>2(m-1)x\(\ge\)(m-1)2
<=>x\(\ge\)\(\dfrac{m-1}{2}\)
Vậy m =1 thì BPT nghiệm đúng với mọi x
m khác 1 thì x\(\ge\)\(\dfrac{m-1}{2}\)
b)m(2-x)+(m-1)2>2x+5
<=>2m-mx+m2-2m+1-2x-5>0
<=>-(m+2)x+m2-4>0
<=>-(m+2)x>-(m-2)(m+2)
<=>(m+2)x<(m-2)(m+2)
*)Nếu m=-2 BPT trở thành
0.x<0
<=>0<0(vô lí)
*)Nếu m khác -2
BPT tương đương x<m-2
Vậy m=-2 BPT vô nghiệm
m khác -2 thì x<m-2
d)
\(x\ne a,x\ne b\)
đặt \(\frac{x-a}{x-b}=t\Leftrightarrow t+\frac{1}{t}=2\Leftrightarrow\frac{t^2-2t+1}{t}=0\Rightarrow t=1\)
\(\frac{x-a}{x-b}=1\Leftrightarrow\frac{\left(x-a\right)-\left(x-b\right)}{x-b}=\frac{b-a}{x-b}=0\)
Vậy: \(a\ne b\) Pt vô nghiệm
a=b phương trinhg nghiệm với mọi x khác a, b
a) ĐKXĐ : \(x\ne5;x\ne-m\)
Khử mẫu ta được :
\(x^2-m^2+x^2-25=2\left(x+5\right)\left(x+m\right)\)
\(\Leftrightarrow-2x\left(m+5\right)=m^2+10m+25\)
\(\Leftrightarrow-2\left(m+5\right)x=\left(m+5\right)^2\)
Nếu m = -5 thì phương trình có dạng 0x = 0 ; PT này có nghiệm tùy ý. để nghiệm tùy ý này là nghiệm của PT ban đầu thì x \(\ne\pm5\)
Nếu m \(\ne-5\) thì PT có nghiệm \(x=\frac{-\left(m+5\right)^2}{2\left(m+5\right)}=\frac{-\left(m+5\right)}{2}\)
Để nghiệm trên là nghiệm của PT ban đầu thì ta có :
\(\frac{-\left(m+5\right)}{2}\ne-5\)và \(\frac{-\left(m+5\right)}{2}\ne-m\)tức là m \(\ne5\)
Vậy nếu \(m\ne\pm5\)thì \(x=-\frac{m+5}{2}\)là nghiệm của phương trình ban đầu
b) ĐKXĐ : \(x\ne2;x\ne m;x\ne2m\)
PT đã cho đưa về dạng x(m+2) = 2m(4-m)
Nếu m = -2 thì 0x = -24 ( vô nghiệm )
Nếu m \(\ne-2\)thì \(x=\frac{2m\left(4-m\right)}{m+2}\)( \(x\ne2;x\ne m;x\ne2m\) )
Với \(\frac{2m\left(4-m\right)}{m+2}\ne2\) thì \(\left(m-1\right)\left(2m-4\right)\ne0\)hay \(m\ne1;m\ne2\)
Với \(\frac{2m\left(4-m\right)}{m+2}\ne m\)thì \(3m\left(m-2\right)\ne0\)hay \(m\ne0;m\ne2\)
Với \(\frac{2m\left(4-m\right)}{m+2}\ne2m\)thì \(4m\left(m-1\right)\ne0\)hay \(m\ne0;m\ne1\)
Vậy khi \(m\ne\pm2\)và \(m\ne0;m\ne1\)thì PT có nghiệm \(x=\frac{2m\left(4-m\right)}{m+2}\)